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Automated scoring of written and spoken responses is a growing field in educational natural language processing.
Automated scoring engines employ machine learning models to predict scores for such responses based on features
extracted from the text/audio of these responses. Examples of automated scoring engines include MI Write for written
responses and SpeechRater for spoken responses.

RSMTool is a python package which automates and combines in a single pipeline multiple analyses that are commonly
conducted when building and evaluating automated scoring models. The output of RSMTool is a comprehensive,
customizable HTML statistical report that contains the outputs of these multiple analyses. While RSMTool does make
it really simple to run this set of standard analyses using a single command, it is also fully customizable and allows users
to easily exclude unneeded analyses, modify the standard analyses, and even include custom analyses in the report.

We expect the primary users of RSMTool to be researchers working on developing new automated scoring engines
or on improving existing ones. Note that RSMTool is not a scoring engine by itself but rather a tool for building and
evaluating machine learning models that may be used in such engines.

The primary means of using RSMTool is via the command-line.

CONTENTS 1
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Note: If you use the Dash app on macOS, you can also download the complete RSMTool documentation for offline
use. Go to the Dash preferences, click on “Downloads”, then “User Contributed”, and search for “RSMTool”.

1.1 Who is RSMTool for?

We expect the primary users of RSMTool to be researchers working on developing new automated scoring engines or
on improving existing ones. Here’s the most common scenario.

A group of researchers already has a set of responses such as essays or recorded spoken responses which have already
been assigned numeric scores by human graders. They have also processed these responses and extracted a set of
(numeric) features using systems such as Coh-Metrix, TextEvaluator, OpenSmile, or using their own custom text/speech
processing pipeline. They wish to understand how well the set of chosen features can predict the human score.

They can then run an RSMTool “experiment” to build a regression-based scoring model (using one of many available
regressors) and produce a report. The report includes descriptive statistics for all their features, diagnostic informa-
tion about the trained regression model, and a comprehensive evaluation of model performance on a held-out set of
responses.

While they could use R, PASW (SPSS) or other tools to perform each of the RSMTool analyses individually and compile
a report himself, RSMTool does all of this work for them with just a single command. Furthermore, the analyses
included into the tool highlight educational measurement criteria important to building automated scoring models. If
they wish, they can conduct further exploratory analysis using their preferred tools for data analysis by using the output
of RSMTool as a starting point.

RSMTool is designed to be customizable:

1. The users can choose to either run all of the default analyses or select only the subset applicable to their particular
study by changing the appropriate settings in a configuration file.

2. RSMTool provides explicit support for adding custom analyses to the report if the user has some analysis in mind
that is not already provided by RSMTool. These analyses can then be automatically included in all subsequent
experiments.

While training and evaluating a scoring model represents the most common use case for RSMTool, it can do a lot more
for advanced users such as:

• evaluating predictions obtained from any ML model using rsmeval,

• generating predictions for new data from an rsmtool model using rsmpredict,

• generating a detailed comparison between two different rsmtool models using rsmcompare,

• generating a summary report for multiple rsmtool models using rsmsummarize,
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• running cross-validation to estimate the performance of rsmtool models using rsmxval, and

• explaining the predictions of non-linear rsmtool models using rsmexplain.

1.2 Overview of RSMTool Pipeline

The following figure gives an overview of the RSMTool pipeline:

As its primary input, RSMTool takes a data file containing a table with numeric, non-sparse features and a human
scores for all responses, pre-processes them and lets you train a regression-based Scoring Model to predict the human
score from the features. Available regression models include Ridge, SVR, AdaBoost, and Random Forests, among
many others.

This trained model can then be used to generate scores for a held-out evaluation data whose feature values are pre-
processed using the same Pre-processing Parameters. In addition to the raw scores predicted by the model, the Pre-
diction Analysis component of the pipline generates several additional post-processed scores that are commonly used
in automated scoring.

The primary output of RSMTool is a comprehensive, customizable HTML statistical report that contains the multiple
analyses required for a comprehensive evaluation of an automated scoring model including descriptive analyses for all
features, model analyses, subgroup comparisons, as well as several different evaluation measures illustrating model
efficacy. More Details about these analyses can be found in this documentaion and in a separate technical paper.

In addition to the HTML report, RSMTool also saves the intermediate outputs of all of the performed analyses as CSV
files.

4 Chapter 1. Documentation
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1.2.1 Input file format

The input files for the training and evaluation data should either be in a tabular format with responses as rows and
features and score(s) in the columns in the jsonlines format with a JSON object per responses on each line. See
below for a more detailed description of the .jsonlines format.

RSMTool supports input files in .csv, .tsv, .sas7bdat, .xlsx, or .jsonlines format. The format of the file is
determined based on the extension. In all cases the output files will be saved in .csv format by default (see file format
for other intermediate file output options).

For Excel spreadsheets, all data must be stored in the first sheet.

Note: RSMTool 8.1 and higher no longer support .xls files. All Excel files must be in .xlsx format.

In a .jsonlines format file, each line corresponds to a response and is represented as a dictionary with column names
as the keys and column values as the values. For example:

{"id":"RESPONSE_1","FEATURE1":4.9380646013,"FEATURE2":-0.0584019308,"FEATURE3":-0.
→˓0846667513,"FEATURE4":-0.3167939755,"FEATURE5":-0.059868434,"FEATURE6":4.6559139785,
→˓"FEATURE7":16,"FEATURE8":-7940.9812058284,"LENGTH":279,"QUESTION":"QUESTION_1","L1":
→˓"Esperanto","y":3,"score2":3}
{"id":"RESPONSE_2","FEATURE1":5.3798973535,"FEATURE2":-0.0781006576,"FEATURE3":-0.
→˓1592030845,"FEATURE4":-0.2715376933,"FEATURE5":-0.1073346977,"FEATURE6":4.7626728111,
→˓"FEATURE7":10,"FEATURE8":-6683.4324801506,"LENGTH":434,"QUESTION":"QUESTION_1","L1":
→˓"Klingon","y":4,"score2":4}

Although RSMTool does allow for nesting in the JSON objects on each line of a .jsonlines format file, the top-level
keys will be ignored when parsing the files and processing the data. Therefore, in the example below, the keys x and
metadata will be ignored.

{"id":"RESPONSE_1","y":3,"x":{"FEATURE1":4.9380646013,"FEATURE2":-0.0584019308,"FEATURE3
→˓":-0.0846667513,"FEATURE4":-0.3167939755,"FEATURE5":-0.059868434,"FEATURE6":4.
→˓6559139785,"FEATURE7":16.0,"FEATURE8":-7940.9812058284},"metadata":{"LENGTH":279,
→˓"QUESTION":"QUESTION_1","L1":"Esperanto","score2":3}}
{"id":"RESPONSE_2","y":4,"x":{"FEATURE1":5.3798973535,"FEATURE2":-0.0781006576,"FEATURE3
→˓":-0.1592030845,"FEATURE4":-0.2715376933,"FEATURE5":-0.1073346977,"FEATURE6":4.
→˓7626728111,"FEATURE7":10.0,"FEATURE8":-6683.4324801506},"metadata":{"LENGTH":434,
→˓"QUESTION":"QUESTION_1","L1":"Klingon","score2":4}}

If the file contains nesting of more than two levels, the column names for nested records beyond the top level will
be generated using . to separate levels: For example, given the JSON object {'foo': {'bar': {'foo2': 0,
'foo3': 0}}, foo will be ignored and the columns will be named bar.foo2 and bar.foo3.

1.2.2 Feature pre-processing

Data filtering

1. Remove all training and evaluation responses that have non-numeric for any of the features (see column selection
methods for different ways to select features).

2. Remove all training and evaluation responses with non-numeric values for human scores.

3. Optionally remove all training and evaluation responses with zero values for human scores. Zero scored responses
are usually removed since in many scoring rubrics, zero scores usually indicate non-scorable responses.

1.2. Overview of RSMTool Pipeline 5
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4. Remove all features with values that do not change across responses (i.e., those with a standard deviation close
to 0).

Data preprocessing

1. Truncate/clamp any outlier feature values, where outliers are defined as 𝜇± 4 * 𝜎, where 𝜇 is the mean and 𝜎 is
the standard deviation.

2. Apply pre-specified transformations to feature values.

3. Standardize all transformed feature values into z-scores.

4. Flip the signs for feature values if necessary.

Pre-processing parameters

Any held-out evaluation data on which the model is to be evaluated needs to be pre-processed in the same way as the
training data. Therefore, the following parameters are computed on the training set, saved to disk, and re-used when
pre-processing the evaluation set:

• Mean and standard deviation of raw feature values. These are used to compute floor and ceiling for truncating
any outliers in the evaluation set;

• Any transformation and sign changes that were applied;

• Mean and standard deviation of transformed feature values. These are used to convert feature values in the
evaluation set to z-scores.

1.2.3 Score post-processing

RSMTool computes six different versions of scores commonly used in different applications of automated scoring:

raw

The raw predictions generated by the model.

raw_trim

The raw predictions “trimmed” to be in the score range acceptable for the item. The scores are trimmed to be within
the following range: 𝑠𝑐𝑜𝑟𝑒𝑚𝑖𝑛 − 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 and 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥 + 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒. Unless specified otherwise, 𝑠𝑐𝑜𝑟𝑒𝑚𝑖𝑛 and
𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥 are set to the lowest and highest points on the scoring scale respectively and tolerance is set to 0.4998.

This approach represents a compromise: it provides scores that are real-valued and, therefore, provide more information
than human scores that are likely to be integer-valued. However, it also ensures that the scores fall within the expected
scale.

Note: In RSMTool v6.x and earlier, the default value for tolerance was 0.49998 (note the extra “9”). Therefore,
the raw_trim values computed for outliers by RSMTool v7.0 and onwards will be different from those computed by
previous versions. If you wish to replicate results obtained with older versions, set the new trim_tolerance field in the
experiment configuration file to 0.49998.

6 Chapter 1. Documentation
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raw_trim_round

The raw_trim predictions rounded to the nearest integer.

Note: The rounding is done using rint function from numpy. See numpy documentation for treatment of values such
as 1.5.

scale

The raw predictions rescaled to match the human score distribution on the training set. The raw scores are first converted
to z-scores using the mean and standard deviation of the machine scores predicted for the training set. The z-scores are
then converted back to “scaled” scores using the mean and standard deviation of the human scores, also computed on
the training set.

scale_trim

The scaled scores trimmed in the same way as raw_trim scores.

scale_trim_round

The scale_trim scores scores rounded to the nearest integer.

1.3 Evaluation Metrics

This section documents the exact mathematical definitions of the primary metrics used in RSMTool for evaluating the
performance of automated scoring engines. RSMTool reports also include many secondary evaluations as described
in intermediary files and the report sections.

The following conventions are used in the formulas in this section:

𝑁 \-\- total number of responses in the evaluation set with numeric human scores and numeric system scores. Zero
human scores are, by default, excluded from evaluations unless exclude_zero_scores was set to false.

𝑀 \-\- system score. The primary evaluation metrics in the RSMTool report are computed for all six types of scores.
For some secondary evaluations, the user can choose between raw and scaled scores using the use_scaled_predictions
configuration field for RSMTool or the scale_with field for RSMEval.

𝐻 \-\- human score. The score values in test_label_column for RSMTool or human_score_column for RSMEval.

𝐻2 \-\- second human score (if available). The score values in second_human_score_column.

𝑁2 \-\- total number of responses in the evaluation set where both𝐻 and𝐻2 are available and are numeric and non-zero
(unless exclude_zero_scores was set to false).

�̄� \-\- Mean of 𝑀 ; �̄� =
𝑁∑︁

𝑛=1

𝑀𝑖

𝑁

�̄� \-\- Mean of 𝐻 ; �̄� =
𝑁∑︁

𝑛=1

𝐻𝑖

𝑁

𝜎𝑀 \-\- Standard deviation of 𝑀 ; 𝜎𝑀 =

√︃∑︀𝑁
𝑖=1 (𝑀𝑖 − �̄�)2

𝑁 − 1

1.3. Evaluation Metrics 7
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𝜎𝐻 \-\- Standard deviation of 𝐻 ; 𝜎𝐻 =

√︃∑︀𝑁
𝑖=1 (𝐻𝑖 − �̄�)2

𝑁 − 1

𝜎𝐻2 \-\- Standard deviation of 𝐻2 ; 𝜎𝐻2 =

√︃∑︀𝑁2

𝑖=1 (𝐻2𝑖 −𝐻2)2

𝑁2 − 1

1.3.1 Accuracy Metrics (Observed score)

These metrics show how well system scores 𝑀 predict observed human scores 𝐻 . The computed metrics are available
in the intermediate file eval, with a subset of the metrics also available in the intermediate file eval_short.

Percent exact agreement (rounded scores only)

Percentage responses where human and system scores match exactly.

𝐴 =

𝑁∑︁
𝑖=1

𝑤𝑖

𝑁
× 100

where 𝑤𝑖 = 1 if 𝑀𝑖 = 𝐻𝑖 and 𝑤𝑖 = 0 if 𝑀𝑖 ̸= 𝐻𝑖

The percent exact agreement is computed using rsmtool.utils.agreement with tolerance set to 0.

Percent exact + adjacent agreement

Percentage responses where the absolute difference between human and system scores is 1 or less.

𝐴𝑎𝑑𝑗 =

𝑁∑︁
𝑖=1

𝑤𝑖

𝑁
× 100

where 𝑤𝑖 = 1 if |𝑀𝑖 −𝐻𝑖| ≤ 1 and 𝑤𝑖 = 0 if |𝑀𝑖 −𝐻𝑖|1.

The percent exact + adjacent agreement is computed using rsmtool.utils.agreement with tolerance set to 1.

Cohen’s kappa (rounded scores only)

𝜅 = 1−
∑︀𝐾−1

𝑘=0

∑︀𝐾
𝑗=1 𝑤𝑗𝑘𝑋𝑗𝑘∑︀𝐾−1

𝑘=0

∑︀𝐾
𝑗=1 𝑤𝑗𝑘𝑚𝑗𝑘

when 𝑘 = 𝑗 then 𝑤𝑗𝑘 = 0 and when 𝑘 ̸= 𝑗 then 𝑤𝑗𝑘 = 1

where:

• 𝐾 is the number of scale score categories (maximum observed rating - minimum observed rating + 1). Note that
for 𝜅 computation the values of H and M are shifted to H-minimum_rating and M-minimum_rating so that the
lowest value is 0. This is done to support negative labels.

• 𝑋𝑗𝑘 is the number times where 𝐻 = 𝑗 and 𝑀 = 𝑘.

• 𝑚𝑗𝑘 is the percent chance agreement:

𝑚𝑗𝑘 =

𝐾∑︁
𝑘=1

𝑛𝑘+

𝑁

𝑛+𝑘

𝑁
, where

– 𝑛𝑘+ - total number of responses where 𝐻𝑖 = 𝑘

8 Chapter 1. Documentation
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– 𝑛+𝑘 - total number of responses where 𝑀𝑖 = 𝑘

Kappa is computed using skll.metrics.kappa with weights set to None and allow_off_by_one set to False (default).

Note: See this discussion for the explanation of how the SKLL implementation differs from the scikit-learn implemen-
tation. The two implementations might produce different results if the matrix contains missing labels. For example,
consider the hypothetical scenario where our predictions only contain the labels 1, 2, and 4. In the SKLL implemen-
tation, the missing 3 will be automatically added to the list of labels whereas in the scikit-learn implementation, the 3
would only be added if a complete list of labels was passed to the function via the optional labels keyword argument.

Quadratic weighted kappa (QWK)

Unlike Cohen’s kappa which is only computed for rounded scores, quadratic weighted kappa is computed for continuous
scores using the following formula:

𝑄𝑊𝐾 =
2 * 𝐶𝑜𝑣(𝑀,𝐻)

𝑉 𝑎𝑟(𝐻) + 𝑉 𝑎𝑟(𝑀) + (�̄� − �̄�)2

Note that in this case the variances and covariance are computed by dividing by N and not by N-1, as in other cases.

QWK is computed using rsmtool.utils.quadratic_weighted_kappa with ddof set to 0.

See Haberman (2019) for the full derivation of this formula. The discrete case is simply treated as a special case of the
continuous one.

Note: In RSMTool v6.x and earlier QWK was computed using skll.metrics.kappa with weights set to "quadratic".
Continuous scores were rounded for computation. Both formulas produce the same scores for discrete (rounded scores)
but QWK values for continuous scores computed by RSMTool starting with v7.0 will be different from those computed
by earlier versions.

Pearson Correlation coefficient (r)

𝑟 =

∑︀𝑁
𝑖=1 (𝐻𝑖 − �̄�)(𝑀𝑖 − �̄�)√︁∑︀𝑁

𝑖=1 (𝐻𝑖 − �̄�)2
∑︀𝑁

𝑖=1 (𝑀 − �̄�)2

Pearson correlation coefficients is computed using scipy.stats.pearsonr.

If the variance of human or system scores is 0 (all scores are the same) or only one response is available, RSMTool
returns None.

Note: In scipy v1.4.1 and later, the implementation uses the following formula:

𝑟 =
𝐻 − �̄�⃦⃦
𝐻 − �̄�

⃦⃦
2

· 𝑀 − �̄�⃦⃦
𝑀 − �̄�

⃦⃦
2

This implementation is more robust to very large values but is more likely to return a value slightly smaller than 1 (for
example, 0.9999999999999998) for perfect correlation when n is small. See this comment for further detail.

1.3. Evaluation Metrics 9
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Standardized mean difference (SMD)

This metrics ensures that the distribution of system scores is centered on a point close to what is observed with human
scoring.

𝑆𝑀𝐷 =
�̄� − �̄�

𝜎𝐻

SMD between system and human scores is computed using rsmtool.utils.standardized_mean_difference with the
method argument set to "unpooled".

Note: In RSMTool v6.x and earlier SMD was computed with the method argument set to "williamson" as described
in Williamson et al. (2012). The values computed by RSMTool starting with v7.0 will be different from those computed
by earlier versions.

Mean squared error (MSE)

The mean squared error of a machine score as a predictor of observed human score H:

𝑀𝑆𝐸(𝐻|𝑀) =
1

𝑁

𝑁∑︁
𝑖=1

(𝐻𝑖 −𝑀𝑖)
2

MSE is computed using sklearn.metrics.mean_squared_error.

Proportional reduction in mean squared error for observed score (R2)

𝑅2 = 1− 𝑀𝑆𝐸(𝐻|𝑀)

𝜎2
𝐻

R2 is computed using sklearn.metrics.r2_score. If only one response is available, RSMTool returns None.

1.3.2 Accuracy Metrics (True score)

According to test theory, an observed score is a combination of the true score 𝑇 and a measurement error. The true score
cannot be observed, but its distribution parameters can be estimated from observed scores. Such an estimation requires
that two human scores be available for at least a subset of responses in the evaluation set since these are necessary to
estimate the measurement error component.

Evaluating system against true score produces performance estimates that are robust to errors in human scores and
remain stable even when human-human agreeement varies (see Loukina et al. (2020).

The true score evaluations computed by RSMTool are available in the intermediate file true_score_eval.

10 Chapter 1. Documentation
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Proportional reduction in mean squared error for true scores (PRMSE)

PRMSE shows how well system scores can predict true scores. This metric generally varies between 0 (random pre-
diction) and 1 (perfect prediction), although in some cases in can take negative values (suggesting a very bad fit) or
exceed 1 (suggesting that the sample size is too small to reliably estimate rater error variance).

PRMSE for true scores is defined similarly to PRMSE for observed scores, but with the true score 𝑇 used instead of
the observed score 𝐻 , that is, as the percentage of variance in the true scores explained by the system scores.

𝑃𝑅𝑀𝑆𝐸 = 1− 𝑀𝑆𝐸(𝑇 |𝑀)

𝜎2
𝑇

In the simple case where all responses have two human scores, 𝑀𝑆𝐸(𝑇 |𝑀) (mean squared error when predicting
true score with system score) and 𝜎2

𝑇 (variance of true score) are estimated from their observed score counterparts
𝑀𝑆𝐸(𝐻|𝑀) and 𝜎2

𝐻 as follows:

• �̂� is used instead of 𝐻 to compute 𝑀𝑆𝐸(�̂�|𝑀) and 𝜎2
�̂�

. �̂� is the average of two human scores for each
response (𝐻𝑖 =

𝐻𝑖+𝐻2𝑖
2 ). These evaluations use �̂� rather than 𝐻 because the measurement errors for each rater

are assumed to be random and, thus, can partially cancel out making the average �̂� closer to true score 𝑇 than
𝐻 or 𝐻2.

• To compute estimates for true scores, the values for observed scores are adjusted for variance of measurement
errors (𝜎2

𝑒 ) in human scores defined as:

𝜎2
𝑒 =

1

2×𝑁2

𝑁2∑︁
𝑖=1

(𝐻𝑖 −𝐻2𝑖)
2

In the simple case, where all responses are double-scored, 𝑀𝑆𝐸(𝑇 |𝑀) is estimated as:

𝑀𝑆𝐸(𝑇 |𝑀) = 𝑀𝑆𝐸(�̂�|𝑀)− 1

2
𝜎2
𝑒

and 𝜎2
𝑇 is estimated as:

𝜎2
𝑇 = 𝜎2

�̂�
− 1

2
𝜎2
𝑒

The PRMSE formula implemented in RSMTool is more general and can also handle the case where the number of
available ratings varies across the responses (e.g. only a subset of responses is double-scored). While rsmtool and
rsmeval only support evaluations with two raters, the implementation of the PRMSE formula available via the API
supports cases where some of the responses have more than two ratings available. The formula was derived by Matt
S. Johnson and is explained in more detail in Loukina et al. (2020).

In this case, the variance of rater errors is computed as a pooled variance estimator.

We first calculate the within-subject variance of human ratings for each response, 𝑉𝑖, using denominator 𝑐𝑖 − 1:

𝑉𝑖 =

∑︀𝑐
𝑗=1(𝐻𝑖,𝑗 − �̄�𝑖)

2

𝑐𝑖 − 1

where

• 𝐻𝑖,𝑗 is the human score assigned by rater 𝑗 to response 𝑖

• 𝑐𝑖 is the total number of human scores available for response 𝑖. For double-scored responses this equals 2.

• �̄�𝑖 is the average human rating for response 𝑖.

We then take a weighted average of those within-responses variances:

𝜎2
𝑒 =

∑︀𝑁
𝑖=1 𝑉𝑖*(𝑐𝑖−1)∑︀𝑁

𝑖=1(𝑐𝑖−1)

The true score variance 𝜎2
𝑇 is then estimated as
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𝜎2
𝑇 =

∑︀𝑁
𝑖=1 𝑐𝑖(�̄�𝑖 − �̄�)2 − (𝑁 − 1)𝜎2

𝑒

𝑐· −
∑︀𝑁

𝑖=1 𝑐2𝑖
𝑐·

where

• 𝑐· =
∑︀𝑁

𝑖=1 𝑐𝑖 is the total number of observed human scores.

• �̄�𝑖 is the average human rating for response 𝑖. For responses with only one rating this will be the single human
score H.

Mean squared error 𝑀𝑆𝐸(𝑇 |𝑀) is estimated as:

𝑀𝑆𝐸(𝑇 |𝑀) =
1

𝑐·

(︃
𝑁∑︁
𝑖=1

𝑐𝑖(�̄�𝑖 −𝑀𝑖)
2 −𝑁𝜎2

𝑒

)︃
The formulas are derived to ensure consistent results regardless of the number of raters and of the number of ratings
availvable for each response.

PRMSE is computed using the rsmtool.utils.prmse_true function.

In some cases, it may be appropriate to compute variance of human errors using a different sample than the one used for
main evaluations. This can be accomplished using rsmtool.utils.variance_of_errors and using an optional configuration
field rater_error_variance in rsmtool or rsmtool

Note: The PRMSE formula assigns higher weight to discrepancies between system scores and human scores when
human score is the average of two or more human scores than when the human score is based on a single score.

1.3.3 Fairness

Fairness of automated scores is an important component of RSMTool evaluations (see Madnani et al, 2017).

When defining an experiment, the RSMTool user has the option of specifying which subgroups should be considered
for such evaluations using subgroups field. These subgroups are then used in all fairness evaluations.

All fairness evaluations are conducted on the evaluation set. The metrics are only computed for either raw_trim or
scale_trim scores (see score postprocessing for further details) depending on the value of use_scaled_predictions in
RSMTool or the value of scale_with in RSMEval.

Differences between standardized means for subgroups (DSM)

This is a standard evaluation used for evaluating subgroup differences. The metrics are available in the intermediate
files eval_by_<SUBGROUP>.

DSM is computed as follows:

1. For each group, get the z-score for each response :math:i, using the �̄� , �̄� , 𝜎𝐻 , and 𝜎𝑆 for system and human
scores for the whole evaluation set:

𝑧𝐻𝑖
=

𝐻𝑖 − �̄�

𝜎𝐻

𝑧𝑀𝑖
=

𝑀𝑖 − �̄�

𝜎𝑀

2. For each response 𝑖, calculate the difference between machine and human scores: 𝑧𝑀𝑖 − 𝑧𝐻𝑖

3. Calculate the mean of the difference 𝑧𝑀𝑖 − 𝑧𝐻𝑖 by subgroup of interest.

DSM is computed using rsmtool.utils.difference_of_standardized_means with:
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population_y_true_observe_mn = �̄� for the whole evaluation set

population_y_pred_mn = �̄� for the whole evaluation set

population_y_true_observed_sd = 𝜎𝐻 for the whole evaluation set

population_y_pred_sd = 𝜎𝑀 for the whole evaluation set

Note: In RSMTool v6.x and earlier, subgroup differences were computed using standardized mean dif-
ference with the method argument set to "williamson". Since the differences computed in this manner
were very sensitive to score distributions, RSMTool no longer uses this function to compute subgroup
differences starting with v7.0.

Additional fairness evaluations

Starting with v7.0, RSMTool includes additional fairness analyses suggested in Loukina, Madnani, & Zechner, 2019.
The computed metrics from these analyses are available in intermediate files fairness_metrics_by_<SUBGROUP>.

These include:

• Overall score accuracy: percentage of variance in squared error (𝑀 −𝐻)2 explained by subgroup membership

• Overall score difference: percentage of variance in absolute error (𝑀 −𝐻) explained by subgroup membership

• Conditional score difference: percentage of variance in absolute error (𝑀 − 𝐻) explained by subgroup mem-
bership when controlling for human score

Please refer to the paper for full descriptions of these metrics.

The fairness metrics are computed using rsmtool.fairness_utils.get_fairness_analyses.

1.3.4 Human-human agreement

If scores from a second human (H2) are available, RSMTool computes the following additional metrics for human-
human agreement using only the 𝑁2 responses, including only responses that contain numeric values for both the 𝐻
and 𝐻2 columns.

The computed metrics are available in the intermediate file consistency.

Percent exact agreement

Same as percent exact agreement for observed scores but substituting 𝐻2 for 𝑀 .

Percent exact + ajdacent agreement

Same as percent adjacent agreement for observed scores but substituting 𝐻2 for 𝑀 and 𝑁2 for 𝑁 .
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Cohen’s kappa

Same as Cohen’s kappa for observed scores but substituting 𝐻2 for 𝑀 and 𝑁2 for 𝑁 .

Quadratic weighted kappa (QWK)

Same as QWK for observed scores but substituting 𝐻2 for 𝑀 and 𝑁2 for 𝑁 .

Pearson Correlation coefficient (r)

Same as r for observed scores but substituting 𝐻2 for 𝑀 and 𝑁2 for 𝑁 .

Standardized mean difference (SMD)

𝑆𝑀𝐷 =
𝐻2−𝐻1√︁

𝜎2
𝐻+𝜎2

𝐻2

2

Unlike SMD for human-system scores, the denominator in this case is the “pooled” standard deviation of 𝐻1 and 𝐻2.

Therefore, SMD between two human scores is computed using rsmtool.utils.standardized_mean_difference with the
method argument set to "pooled".

Note: In RSMTool v6.x and earlier, SMD was computed with the method argument set to "williamson" as described
in Williamson et al. (2012). Starting with v7.0, the values computed by RSMTool will be different from those computed
by earlier versions.

1.4 Installation

Note that RSMTool currently works with Python 3.8, 3.9, and 3.10.

1.4.1 Installing with conda

Currently, the recommended way to install RSMTool is by using the conda package manager. If you have already
installed conda, you can skip straight to Step 2.

1. To install conda, follow the instructions on this page.

2. Create a new conda environment (say, rsmtool) and install the RSMTool conda package for your preferred
Python version. For example, for Python 3.8, run:

conda create -n rsmtool -c conda-forge -c ets python=3.8 rsmtool

3. Activate this conda environment by running conda activate rsmtool. You should now have all of the RSM-
Tool command-line utilities in your path.

4. From now on, you will need to activate this conda environment whenever you want to use RSMTool. This will
ensure that the packages required by RSMTool will not affect other projects.

RSMTool can also be downloaded directly from GitHub.
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1.4.2 Installing with pip

You can also use pip to install RSMTool instead of conda. To do so, simply run:

pip install rsmtool

However, note that pip may be quite slow since its dependency resolution is not as good as conda’s. Also, note that if
you are on macOS, you will need to have the following line in your .bashrc for RSMTool to work properly:

export MPLBACKEND=Agg

1.5 Tutorial

First you’ll want to install RSMTool and make sure you the conda environment in which you installed it is activated.

1.5.1 Workflow

Important: Although this tutorial provides feature values for the purpose of illustration, RSMTool does not include
any functionality for feature extraction; the tool is designed for researchers who use their own NLP/Speech processing
pipeline to extract features for their data.

Once you have the features extracted from your data, using RSMTool is fairly straightforward:

1. Make sure your data is split into a training set and a held-out evaluation set. You will need two files containing
the feature values: one for each set. The files should be in one of the supported formats

2. Create an experiment configuration file describing the modeling experiment you would like to run.

3. Run that configuration file with rsmtool and generate the experiment HTML report as well as the intermediate
CSV files.

4. Examine the HTML report to check various aspects of model performance.

Note that the above workflow does not use the customization features of RSMTool, e.g., choosing which sections to
include in the report or adding custom analyses sections etc. However, we will stick with this workflow for our tutorial
since it is likely to be the most common use case.

1.5.2 ASAP Example

Let’s see how we can apply this basic RSMTool workflow to a simple example based on a 2012 Kaggle competition
on automated essay scoring called the Automated Student Assessment Prize (ASAP) contest. As part of that contest,
responses to 8 different essay questions written by students in grades 6-10 were provided. The responses were scored
by humans and given a holistic score indicating the English proficiency of the student. The goal of the contest was to
build an automated scoring model with the highest accuracy on held-out evaluation data.

For our tutorial, we will use one of the questions from this data to illustrate how to use RSMTool to train a scoring
model and evaluate its performance. All of the data we refer to below can be found in the examples/rsmtool folder
in the github repository.
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Extract features

Kaggle provides the actual text of the responses along with the human scores in a .tsv file. The first step, as with
any automated scoring approaches, is to extract features from the written (or spoken) responses that might be useful
in predicting the score we are interested in. For example, some features that might be useful for predicting the English
proficiency of a response are:

• Does the response contain any grammatical errors and if so, how many and of what kind since some grammatical
errors are more serious than others.

• Is the response is well organized, e.g., whether there is a clear thesis statement and a conclusion, etc.

• Is the response coherent, i.e., do the ideas expressed in the various paragraphs well connected?

• Does the response contain any spelling errors?

For more examples of what features might look like, we refer the reader to this paper by Attali & Burstein1. For our
ASAP2 data, we extracted the following four features:

• GRAMMAR: indicates how grammatically fluent the responses is.

• MECHANICS: indicates how free of mechanical errors (e.g., spelling errors) the response is.

• DISCOURSE: indicates whether the discourse transitions in the response make sense.

• ORGANIZATION: indicates whether the response is organized well.

Note: These features were extracted using proprietary NLP software. To reiterate, RSMTool does not include any
NLP/speech components for feature extraction.

Create a configuration file

The next step is to create an RSMTool experiment configuration file in .json format.

1 {
2 "experiment_id": "ASAP2",
3 "train_file": "train.csv",
4 "test_file": "test.csv",
5 "model": "LinearRegression",
6 "description": "A model which uses all features and a LinearRegression.",
7 "test_label_column": "score",
8 "train_label_column": "score",
9 "use_scaled_predictions": true,

10 "trim_min": 1,
11 "trim_max": 6,
12 "id_column": "ID",
13 "second_human_score_column": "score2",
14 "length_column": "LENGTH"
15 }

Let’s take a look at the options in our configuration file.

• Line 2: We define an experiment ID
1 Attali, Y., & Burstein, J. (2006). Automated essay scoring with e-rater® V.2. Journal of Technology, Learning, and Assessment, 4(3). https:

//ejournals.bc.edu/index.php/jtla/article/download/1650/1492
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• Lines 3-4: We list the paths to our training and evaluation files with the feature values. For this tutorial we used
.csv format, but RSMTool also supports several other input file formats.

• Line 5: We choose to use a linear regression model to combine those features into a score.

• Line 6: We also provide a description which will be included in the experiment report.

• Lines 7-8: These two fields indicate that the human scores in the two .csv files are located in columns named
score.

• Lines 9: Next, we indicate that we would like to use the scaled scores for our evaluation analyses.

• Lines 10-11: These fields indicate that the lowest score on the scoring scale is a 1 and the highest score is a 6.
This information is usually part of the rubric used by human graders.

• Line 12: This field indicates that the unique IDs for the responses in the two .csv files are located in columns
named ID.

• Line 13: This field indicates that scores from a second set of human graders are also available (useful for com-
paring the agreement between human-machine scores to the agreement between two sets of humans) and are
located in the score2 column in the test set .csv file.

• Line 14: This field indicates that response lengths are also available for the training data in a column named
LENGTH.

Documentation for all of the available configuration options is available here.

Note:

1. For this example, we are using all of the non-metadata columns in the training and evaluation .csv files as
features in the model. However, it is also possible to choose specific columns to be used for training the model.

2. You can also use our nifty capability to automatically generate rsmtool configuration files rather than creating
them manually.

3. To view the tutorial output on a Weights & Biases project, use the file config_rsmtool_with_wandb.json in the
same tutorial folder. Make sure to edit the W&B entity field to work with your Weights & Biases credentials.

Run the experiment

Now that we have our features in the right format and our configuration file in .json format, we can use the rsmtool
command-line script to run our modeling experiment.

$ cd examples/rsmtool
$ rsmtool config_rsmtool.json

This should produce output like:

Output directory: /Users/nmadnani/work/rsmtool/examples/rsmtool
Loading experiment data
Reading configuration file: /Users/nmadnani/work/rsmtool/examples/rsmtool/config_rsmtool.
→˓json
Reading training data: /Users/nmadnani/work/rsmtool/examples/rsmtool/train.csv
Reading evaluation data: /Users/nmadnani/work/rsmtool/examples/rsmtool/test.csv
Pre-processing training and test set features
Saving training and test set data to disk
Training LinearRegression model

(continues on next page)
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(continued from previous page)

The exact solution is x = 0
Running analyses on training set
Generating training and test set predictions
Processing test set predictions
Saving training and test set predictions to disk
Scaling the coefficients and saving them to disk
Running analyses on test set predictions
Starting report generation
Merging sections
Exporting HTML
Executing notebook with kernel: python3

Once the run finishes, you will see the output, figure, report, and feature sub-directories in the current directory.
Each of these directories contain useful information but we are specifically interested in the report/ASAP2_report.
html file, which is the final RSMTool experiment report.

Examine the report

Our experiment report contains all the information we would need to determine how well our linear regression model
with four features is doing. It includes:

1. Descriptive feature statistics.

2. Inter-feature correlations.

3. Model fit and diagnostics.

4. Several different metrics indicating how well the machine’s scores agree with the humans’.

. . . and much more.

If we are not satisfied with the performance of the model, we can then take specific action, e.g., either add new features
or perhaps try a more sophisticated model. And then run rsmtool again and examine the report. Building a scoring
model is generally an iterative process.

1.5.3 What’s next?

Next, you should read the detailed documentation on rsmtool since the tutorial only covered a very basic example. If
you are interested in RSMTool but your use case is more nuanced, we have probably got you covered.

References

1.6 Using RSMTool

For most users, the primary means of using RSMTool will be via the command-line utility rsmtool. We refer to each
run of rsmtool as an “experiment”.
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1.6.1 Input

rsmtool requires a single argument to run an experiment: the path to a configuration file. It can also take an output
directory as an optional second argument. If the latter is not specified, rsmtool will use the current directory as the
output directory.

Here are all the arguments to the rsmtool command-line script.

config_file

The JSON configuration file for this experiment.

output_dir (optional)

The output directory where all the files for this experiment will be stored.

-f, --force

If specified, the contents of the output directory will be overwritten even if it already contains the output of
another rsmtool experiment.

-h, --help

Show help message and exist.

-V, --version

Show version number and exit.

Experiment configuration file

This is a file in .json format that provides overall configuration options for an rsmtool experiment. Here’s an example
configuration file for rsmtool.

Note: To make it easy to get started with rsmtool, we provide a way to automatically generate configurations file
both interactively as well as non-interactively. Novice users will find interactive generation more helpful while more
advanced users will prefer non-interactive generation. See this page for more details.

Next, we describe all of the rsmtool configuration fields in detail. There are four required fields and the rest are all
optional. We first describe the required fields and then the optional ones (sorted alphabetically).

experiment_id

An identifier for the experiment that will be used to name the report and all intermediate files. It can be any combination
of alphanumeric values, must not contain spaces, and must not be any longer than 200 characters.

model

The machine learner you want to use to build the scoring model. Possible values include built-in linear regression
models as well as all of the learners available via SKLL. With SKLL learners, you can customize the tuning objective
and also compute expected scores as predictions.
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train_file

The path to the training data feature file in one of the supported formats. Each row should correspond to a single
response and contain numeric feature values extracted for this response. In addition, there should be a column with a
unique identifier (ID) for each response and a column with the human score for each response. The path can be absolute
or relative to the location of config file.

test_file

The path to the evaluation data feature file in one of the supported formats. Each row should correspond to a single
response and contain numeric feature values extracted for this response. In addition, there should be a column with a
unique identifier (ID) for each response and a column with the human score for each response. The path can be absolute
or relative to the location of config file.

Note:

1. For both the training and evaluation files, the default behavior of rsmtool is to look for a column named
spkitemid in order to get the unique IDs for each response and a column named sc1 to get train/test labels. The
optional fields id_column and train_label_column can be used to specify different names for these columns.

2. rsmtool also assumes that all other columns present in these files (other than those containing IDs and labels)
contain feature values. If this is not the case, one can use other configuration file fields to identify columns
containing non-feature information useful for various analyses, e.g., second_human_score_column, flag_column,
subgroups et cetera below.

3. Any columns not explicitly identified in (1) and (2) will be considered feature columns and used by rsmtool in
the model. To use only a subset of these remaining columns as features, one can employ the four optional fields
features, feature_subset_file, feature_subset, and sign. See selecting feature columns for more details on how to
achieve this.

candidate_column (Optional)

The name for an optional column in the training and test data containing unique candidate IDs. Candidate IDs are
different from response IDs since the same candidate (test-taker) might have responded to multiple questions.

custom_sections (Optional)

A list of custom, user-defined sections to be included into the final report. These are IPython notebooks (.ipynb files)
created by the user. The list must contains paths to the notebook files, either absolute or relative to the configuration
file. All custom notebooks have access to some pre-defined variables.
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description (Optional)

A brief description of the experiment. This will be included in the report. The description can contain spaces and
punctuation. It’s blank by default.

exclude_zero_scores (Optional)

By default, responses with human scores of 0 will be excluded from both training and evaluation set. Set this field to
false if you want to keep responses with scores of 0. Defaults to true.

feature_subset (Optional)

Name of the pre-defined feature subset to be used if using subset-based column selection.

feature_subset_file (Optional)

Path to the feature subset file if using subset-based column selection.

features (Optional)

Path to the file with list of features if using fine-grained column selection. Alternatively, you can pass a list of feature
names to include in the experiment.

file_format (Optional)

The format of the intermediate files. Options are csv, tsv, or xlsx. Defaults to csv if this is not specified.

flag_column (Optional)

This field makes it possible to only use responses with particular values in a given column (e.g. only responses with a
value of 0 in a column called ADVISORY). The field takes a dictionary in Python format where the keys are the names of
the columns and the values are lists of values for responses that will be used to train the model. For example, a value of
{"ADVISORY": 0} will mean that rsmtool will only use responses for which the ADVISORY column has the value 0.
If this field is used without flag_column_test, the conditions will be applied to both training and evaluation set and
the specified columns must be present in both sets. When this field is used in conjunction with flag_column_test,
the conditions will be applied to training set only and the specified columns must be present in the training set. Defaults
to None.

Note: If several conditions are specified (e.g., {"ADVISORY": 0, "ERROR": 0}) only those responses which
satisfy all the conditions will be selected for further analysis (in this example, these will be the responses where the
ADVISORY column has a value of 0 and the ERROR column has a value of 0).

Note: When reading the values in the supplied dictionary, rsmtool treats numeric strings, floats and integers as the
same value. Thus 1, 1.0, "1" and "1.0" are all treated as the 1.0.
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flag_column_test (Optional)

This field makes it possible to only use a separate Python flag dictionary for the evaluation set. If this field is not passed,
and flag_column is passed, then the same advisories will be used for both training and evaluation sets.

When this field is used, the specified columns must be present in the evaluation set. Defaults to None or flag_column`,
if flag_column is present. Use flag_column_test only if you want filtering of the test set.

Note: When used, flag_column_test field determines all filtering conditions for the evaluation set. If it is used
in conjunction with flag_column field, the filtering conditions defined in flag_column will only be applied to the
training set. If you want to apply a subset of conditions to both partitions with additional conditions applied to the
evaluation set only, you will need to specify the overlapping conditions separately for each partition.

general_sections (Optional)

RSMTool provides pre-defined sections for rsmtool (listed below) and, by default, all of them are included in the
report. However, you can choose a subset of these pre-defined sections by specifying a list as the value for this field.

• data_description: Shows the total number of responses in training and evaluation set, along with
any responses have been excluded due to non-numeric features/scores or flag columns.

• data_description_by_group: Shows the total number of responses in training and evaluation set
for each of the subgroups specified in the configuration file. This section only covers the responses
used to train/evaluate the model.

• feature_descriptives: Shows the descriptive statistics for all raw feature values included in the
model:

– a table showing mean, standard deviation, min, max, correlation with human score etc.;

– a table with percentiles and outliers; and

– a barplot showing the number of truncated outliers for each feature.

• features_by_group: Shows boxplots with distributions of raw feature values by each of the sub-
groups specified in the configuration file.

• preprocessed_features: Shows analyses of preprocessed features:

– histograms showing the distributions of preprocessed features values;

– the correlation matrix between all features and the human score;

– a barplot showing marginal and partial correlations between all features and the human score,
and, optionally, response length if length_column is specified in the config file.

• dff_by_group: Differential feature functioning by group. The plots in this section show average
feature values for each of the subgroups conditioned on human score.

• consistency: Shows metrics for human-human agreement, the difference (“degradation”) between
the human-human and human-system agreement, and the disattenuated human-machine correlations.
This notebook is only generated if the config file specifies second_human_score_column.

• model: Shows the parameters of the learned regression model. For linear models, it also includes
the standardized and relative coefficients as well as model diagnostic plots.

• evaluation: Shows the standard set of evaluations recommended for scoring models on the eval-
uation data:

– a table showing human-system association metrics;
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– the confusion matrix; and

– a barplot showing the distributions for both human and machine scores.

• evaluation_by_group: Shows barplots with the main evaluation metrics by each of the subgroups
specified in the configuration file.

• fairness_analyses: Additional fairness analyses suggested in Loukina, Madnani, & Zechner,
2019. The notebook shows:

– percentage of variance in squared error explained by subgroup membership

– percentage of variance in raw (signed) error error explained by subgroup membership

– percentage of variance in raw (signed) error explained by subgroup membership when control-
ling for human score

– plots showing estimates for each subgroup for each model

• true_score_evaluation: evaluation of system scores against the true scores estimated according
to test theory. The notebook shows:

– Number of single and double-scored responses.

– Variance of human rater errors and estimated variance of true scores

– Mean squared error (MSE) and proportional reduction in mean squared error (PRMSE) when
predicting true score with system score.

• pca: Shows the results of principal components analysis on the processed feature values:

– the principal components themselves;

– the variances; and

– a Scree plot.

The analysis keeps all components. The total number of components usually equals the total number
of features. In cases where the total number of responses is smaller than the number of features, the
number of components is the same as the number of responses.

• intermediate_file_paths: Shows links to all of the intermediate files that were generated while
running the experiment.

• sysinfo: Shows all Python packages along with versions installed in the current environment while
generating the report.

id_column (Optional)

The name of the column containing the response IDs. Defaults to spkitemid, i.e., if this is not specified, rsmtool
will look for a column called spkitemid in the training and evaluation files.
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length_column (Optional)

The name for the optional column in the training and evaluation data containing response length. If specified, length
is included in the inter-feature and partial correlation analyses. Note that this field should not be specified if you want
to use the length column as an actual feature in the model. In the latter scenario, the length column will automatically
be included in the analyses, like any other feature. If you specify length_column and include the same column name
as a feature in the feature file, rsmtool will ignore the length_column setting. In addition, if length_column
has missing values or if its standard deviation is 0 (both somewhat unlikely scenarios), rsmtool will not include any
length-based analyses in the report.

min_items_per_candidate (Optional)

An integer value for the minimum number of responses expected from each candidate. If any candidates have fewer
responses than the specified value, all responses from those candidates will be excluded from further analysis. Defaults
to None.

min_n_per_group (Optional)

A single numeric value or a dictionary with keys as the group names listed in the subgroups field and values as the
thresholds for the groups. When specified, only groups with at least this number of instances will be displayed in the
tables and plots contained in the report. Note that this parameter only affects the HTML report and the figures. For
all analyses – including the computation of the population parameters – data from all groups will be used. In addition,
the intermediate files will still show the results for all groups.

Note: If you supply a dictionary, it must contain a key for every subgroup listed in subgroups field. If no threshold is
to be applied for some of the groups, set the threshold value for this group to 0 in the dictionary.

Note: Any provided thresholds will be applied when displaying the feature descriptive analyses conducted on the
training set and the results of the performance analyses computed on the evaluation set.

predict_expected_scores (Optional)

If a probabilistic SKLL classifier is chosen to build the scoring model, then expected scores — probability-weighted
averages over contiguous, numeric score points — can be generated as the machine predictions instead of the most
likely score point, which would be the default for a classifier. Set this field to true to compute expected scores as
predictions. Defaults to false.

Note: You may see slight differences in expected score predictions if you run the experiment on different machines or
on different operating systems most likely due to very small probablity values for certain score points which can affect
floating point computations.
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rater_error_variance (Optional)

True score evaluations require an estimate of rater error variance. By default, rsmtoolwill compute this variance from
double-scored responses in the data. However, in some cases, one may wish to compute the variance on a different
sample of responses. In such cases, this field can be used to set the rater error variance to a precomputed value which is
then used as-is by rsmtool. You can use the rsmtool.utils.variance_of_errors function to compute rater error variance
outside the main evaluation pipeline.

second_human_score_column (Optional)

The name for an optional column in the test data containing a second human score for each response. If specified,
additional information about human-human agreement and degradation will be computed and included in the report.
Note that this column must contain either numbers or be empty. Non-numeric values are not accepted. Note also that
the exclude_zero_scores (Optional) option below will apply to this column too.

Note: You do not need to have second human scores for all responses to use this option. The human-human agreement
statistics will be computed as long as there is at least one response with numeric value in this column. For responses
that do not have a second human score, the value in this column should be blank.

section_order (Optional)

A list containing the order in which the sections in the report should be generated. Any specified order must explicitly
list:

1. Either all pre-defined sections if a value for the general_sections field is not specified OR the sections specified
using general_sections, and

2. All custom section names specified using custom_ sections, i.e., file prefixes only, without the path and without
the .ipynb extension, and

3. All special sections specified using special_sections.

select_transformations (Optional)

If this option is set to true the system will try apply feature transformations to each of the features and then choose the
transformation for each feature that yields the highest correlation with human score. The possible transformations are:

• raw: no transformation, use original feature value

• org: same as raw

• inv: 1/x

• sqrt: square root

• addOneInv: 1/(x+1)

• addOneLn: ln(x+1)

We only consider transformations that produce numeric results for all values for a given feature column. For example,
if a feature column contains a single negative value, the sqrt transformation will be ignored even if it would have
resulted in the highest correlation with human score for the remaining values. In addition, the inv and addOneInv
transformations are never used for feature columns that contain both positive and negative values.

Defaults to false.
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See also:

It is also possible to manually apply transformations to any feature as part of the feature column selection process.

sign (Optional)

Name of the column containing expected correlation sign between each feature and human score if using subset-based
column selection.

skll_fixed_parameters (Optional)

Any fixed hyperparameters to be used if a SKLL model is chosen to build the scoring model. This should be a dictionary
with the names of the hyperparameters as the keys. To determine what hyperparameters are available for the SKLL
learner you chose, consult the scikit-learn documentation for the learner with the same name as well as the SKLL
documentation. Any values you specify here will override both the scikit-learn and SKLL defaults. The values for a
key can be string, integer, float, or boolean depending on what the hyperparameter expects. Note that if this option is
specified with the built-in linear regression models, it will simply be ignored.

skll_grid_search_jobs (Optional)

Number of folds to run in parallel when using SKLL grid search. Defaults to 1 (no parallelization). For very large data
sets, setting this option to a higher number (e.g., number of CPU cores) may significantly improve running time.

skll_objective (Optional)

The tuning objective to use if a SKLL model is chosen to build the scoring model. Possible values are the objectives
available via SKLL. Defaults to neg_mean_squared_error for SKLL regressors and f1_score_micro for SKLL
classifiers. Note that if this option is specified with the built-in linear regression models, it will simply be ignored.

special_sections (Optional)

A list specifying special ETS-only sections to be included into the final report. These sections are available only to
ETS employees via the rsmextra package.

standardize_features (Optional)

If this option is set to false features will not be standardized by subtracting the mean and dividing by the standard
deviation. Defaults to true.
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subgroups (Optional)

A list of column names indicating grouping variables used for generating analyses specific to each of those defined
subgroups. For example, ["prompt", "gender", "native_language", "test_country"]. These subgroup
columns need to be present in both training and evaluation data. If subgroups are specified, rsmtool will generate:

• description of the data by each subgroup;

• boxplots showing the feature distribution for each subgroup on the training set; and

• tables and barplots showing human-system agreement for each subgroup on the evaluation set.

test_label_column (Optional)

The name for the column containing the human scores in the test data. If set to to fake, fake scores will be generated
using randomly sampled integers. This option may be useful if you only need descriptive statistics for the data and do
not care about the other analyses. Defaults to sc1.

train_label_column (Optional)

The name for the column containing the human scores in the training data. If set to to fake, fake scores will be
generated using randomly sampled integers. This option may be useful if you only need descriptive statistics for the
data and do not care about the other analyses. Defaults to sc1.

Note: All responses with non-numeric values in either train_label_column or test_label_column and/or
those with non-numeric values for relevant features will be automatically excluded from model training and evalu-
ation. By default, zero scores in either train_label_column or test_label_column will also be excluded. See
exclude_zero_scores (Optional) if you want to keep responses with zero scores.

trim_max (Optional)

The single numeric value for the highest possible integer score that the machine should predict. This value will be used
to compute the ceiling value for trimmed (bound) machine scores as trim_max + trim_tolerance. Defaults to the
highest observed human score in the training data or 10 if there are no numeric human scores available.

trim_min (Optional)

The single numeric value for the lowest possible integer score that the machine should predict. This value will be used
to compute the floor value for trimmed (bound) machine scores as trim_min - trim_tolerance. Defaults to the
lowest observed human score in the training data or 1 if there are no numeric human scores available.
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trim_tolerance (Optional)

The single numeric value that will be used to pad the trimming range specified in trim_min and trim_max. This
value will be used to compute the ceiling and floor values for trimmed (bound) machine scores as trim_max +
trim_tolerance for ceiling value and trim_min-trim_tolerance for floor value. Defaults to 0.4998.

Note: For more fine-grained control over the trimming range, you can set trim_tolerance to 0 and use trim_min
and trim_max to specify the exact floor and ceiling values.

truncate_outliers (Optional)

If this option is set to false, outliers (values more than 4 standard deviations away from the mean) in feature columns
will _not_ be truncated. Defaults to true.

use_scaled_predictions (Optional)

If set to true, certain evaluations (confusion matrices, score distributions, subgroup analyses) will use the scaled
machine scores. If set to false, these evaluations will use the raw machine scores. Defaults to false.

Note: All evaluation metrics (e.g., kappa and pearson correlation) are automatically computed for both scaled and
raw scores.

use_thumbnails (Optional)

If set to true, the images in the HTML will be set to clickable thumbnails rather than full-sized images. Upon clicking
the thumbnail, the full-sized images will be displayed in a separate tab in the browser. If set to false, full-sized images
will be displayed as usual. Defaults to false.

use_truncation_thresholds (Optional)

If set to true, use the min and max columns specified in the features file to clamp outlier feature values. This is useful
if users would like to clamp feature values based on some pre-defined boundaries, rather than having these boundaries
calculated based on the training set. Defaults to false.

Note: If use_truncation_thresholds is set, a features file _must_ be specified, and this file _must_ include
min and max columns. If no feature file is specified or these columns are missing, an error will be raised.
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use_wandb (Optional)

If set to true, the generated reports and all intermediate tables will be logged to Weights & Biases. The Weights &
Biases entity and project name can be specified in the appropriate configuration fields.

The tables and plots will be logged in a section named rsmtool in a new run under the given project, and the report will
be added to a reports section in that run. In addition, some evaluation metrics will be logged to the run’s history for
easy comparison between different runs in the project. With each metric name representing the context and the table
from which the metric is taken, for example: rsmeval/consistency.SMD is the SMD metric from the consistency
table calculated by rsmtool. Defaults to false.

wandb_project (Optional)

The Weights & Biases project name if logging to Weights & Biases is enabled. If a project by this name does not
already exist, it will be created.

Important:

1. Before using Weights & Biases for the first time, users should log in and provide their API key as described in
W&B Quickstart guidelines.

2. Note that when using W&B logging, the rsmtool run may take significantly longer due to the network traffic
being sent to W&B.

wandb_entity (Optional)

The Weights & Biases entity name if logging to Weights & Biases is enabled. Entity can be a user name or the name
of a team or organization.

1.6.2 Output

rsmtool produces a set of folders in the experiment output directory. This is either the current directory in which
rsmtool is run or the directory specified as the second optional command-line argument. If logging to Weights &
Biases is enabled, the reports and all intermediate files are also logged to the specified Weights & Biases project.

report

This folder contains the final RSMTool report in HTML format as well in the form of a Jupyter notebook (a .ipynb
file).
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output

This folder contains all of the intermediate files produced as part of the various analyses performed, saved as .csv files.
rsmtool will also save in this folder a copy of the configuration file. Fields not specified in the original configuration
file will be pre-populated with default values.

figure

This folder contains all of the figures generated as part of the various analyses performed, saved as .svg files.

feature

This folder contains a .csv file that lists all features, signs and transformation as used in the final model, taking into
account any manual or automatic feature selection. See feature column selection for more details.

1.6.3 Selecting Feature Columns

By default, rsmtool will use all columns included in the training and evaluation data files as features. The only
exception are any columns explicitly identified in the configuration file as containing non-feature information (e.g.,
id_column, train_label_column, test_label_column, etc.)

However, there are certain scenarios in which it is useful to choose specific columns in the data to be used as features.
For example, let’s say that you have a large number of very different features and you want to use a different subset of
features to score different types of questions on a test. In this case, the ability to easily choose the desired features for
any rsmtool experiment becomes quite important. The alternative of manually pre-processing the data to remove the
features you don’t need is quite cumbersome.

There are two ways to select specific columns in the data as features:

1. Fine-grained column selection: In this method, you manually create a list of the columns that you wish to use
as features for an rsmtool experiment. See fine-grained selection for more details.

2. Subset-based column selection: In this method, you can pre-define subsets of features and then select entire
subsets at a time for any rsmtool experiment. See subset-based selection for more details.

While fine-grained column selection is better for a single experiment, subset-based selection is more convenient when
you need to run several experiments with somewhat different subsets of features.

Warning: rsmtool will filter the training and evaluation data to remove any responses with non-numeric values
in any of the feature columns before training the model. If your data includes a column containing string values
and you do not use any of these methods of feature selection nor specify this column as the id_column or the
candidate_column or a subgroup column, rsmtool will filter out all the responses in the data.
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Fine-grained column selection

To manually select columns to be used as features, you can provide a data file in one of the supported formats. The
file must contain a column named feature which specifies the names of the feature columns that should be used for
scoring model building. For additional flexibility, the same file also allows you to describe transformations to be applied
to the values in these feature columns before being used in the model. The path to this file should be set as an argument
to features in the experiment configuration file. (Note: If you do not wish to perform any feature transformations,
but would simply like to select certain feature columns to include, you can also pass a list of feature names as an
arguement to features.)

Here’s an example of what such a file might look like.

feature,transform,sign
feature1,raw,1
feature2,inv,-1

There is one required column and two optional columns.

feature

The exact name of the column in the training and evaluation data files, including capitalization. Column names cannot
contain hyphens. The following strings are reserved and cannot not be used as feature column names: spkitemid,
spkitemlab, itemType, r1, r2, score, sc, sc1, and adj. In addition, any column names provided as values for
id_column, train_label_column, test_label_column, length_column, candidate_column, and subgroups
may also not be used as feature column names.

transform (optional)

A transformation that should be applied to the column values before using it in the model. Possible values are:

• raw: no transformation, use original value

• org: same as raw

• inv: 1/x

• sqrt: square root

• addOneInv: 1/(x+1)

• addOneLn: ln(x+1)

Note that rsmtoolwill raise an exception if the values in the data do not allow the supplied transformation (for example,
if inv is applied to a column which has 0 values). If you really want to use the tranformation, you must pre-process
your training and evaluation data files to remove the problematic cases.

If the feature file contains no transform column, rsmtool will use the original values for all features (raw trasform).
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sign (optional)

After transformation, the column values will be multiplied by this number, which can be either 1 or -1 depending on
the expected sign of the correlation between transformed feature and human score. This mechanism is provided to
ensure that all features in the final models have a positive correlation with the score, if that is so desired by the user.

If the feature file contains no sign column, rsmtool will multiply all values by 1.

When determining the sign, you should take into account the correlation between the original feature and the score as
well as any applied transformations. For example, if you use feature which has a negative correlation with the human
score and apply sqrt transformation, sign should be set to -1. However, if you use the same feature but apply the inv
transformation, sign should now be set to 1.

To ensure that this is working as expected, you can check the sign of correlations for both raw and processed features
in the final report.

Note: You can use the fine-grained method of column selection in combination with a model with automatic feature
selection. In this case, the features that end up being used in the final model can be found in the .csv file in the feature
folder in the experiment output directory.

Subset-based column selection

For more advanced users, rsmtool offers the ability to assign columns to named subsets in a data file in one of the
supported formats and then select a set of columns by simply specifying the name of that pre-defined subset.

If you want to run multiple rsmtool experiments, each choosing from a large number of features, generating a separate
feature file for each experiment listing columns to use can quickly become tedious.

Instead you can define feature subsets by providing a subset definition file in one of the supported formats which lists all
feature names under a column named feature. Each subset is an additional column with a value of either 0 (denoting
that the feature does not belong to the subset named by that column) or 1 (denoting that the feature does belong to the
subset named by that column).

Here’s an example of a subset definition file, say subset.csv.

feature,A,B
feature1,0,1
feature2,1,1
feature3,1,0

In this example, feature2 and feature3 belong to a subset called “A” and feature1 and feature1 and feature2
belong to a subset called “B”.

This feature subset file can be provided to rsmtool using the feature_subset_file field in the configuration file. Then,
to select a particular pre-defined subset of features, you simply set the feature_subset field in the configuration file to
the name of the subset that you wish to use.

Then, in order to use feature subset “A” (feature2 and feature3) in an experiment, we need to set the following two
fields in our experiment configuration file:

{
...
"feature_subset_file": "subset.csv",
"feature_subset": "A",

(continues on next page)

32 Chapter 1. Documentation



Rater Scoring Modeling Tool, Release 11.3.0

(continued from previous page)

...
}

Transformations

Unlike in fine-grained selection, the feature subset file does not list any transformations to be applied to the feature
columns. However, you can automatically select transformation for each feature in the selected subset by applying
all possible transforms and identifying the one which gives the highest correlation with the human score. To use this
functionality set the select_transformations field in the configuration file to true.

Signs

Some guidelines for building scoring models require all coefficients in the model to be positive and all features to have
a positive correlation with human score. rsmtool can automatically flip the sign for any pre-defined feature subset.
To use this functionality, the feature subset file should provide the expected correlation sign between each feature and
human score under a column called sign_<SUBSET> where <SUBSET> is the name of the feature subset. Then, to tell
rsmtool to flip the sign for this subset, you need to set the sign field in the configuration file to <SUBSET>.

To understand this, let’s re-examine our earlier example of a subset definition file subset.csv, but with an additional
column.

feature,A,B,sign_A
feature1,0,1,+
feature2,1,1,-
feature3,1,0,+

Then, in order to use feature subset “A” (feature2 and feature3) in an experiment with the sign of feature3 flipped
appropriately (multiplied by -1) to ensure positive correlations with score, we need to set the following three fields in
our experiment configuration file:

{
...
"feature_subset_file": "subset.csv",
"feature_subset": "A",
"sign": "A"
...

}

Note: If select_transformations is set to true, rsmtool is intelligent enough to take it into account when flipping the
signs. For example, if the expected correlation sign for a given feature is negative, rsmtool will multiply the feature
values by -1 if the sqrt transform has the highest correlation with score. However, if the best transformation turns out
to be inv – which already changes the polarity of the feature – no such multiplication will take place.
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1.6.4 Intermediate files

Although the primary output of RSMTool is an HTML report, we also want the user to be able to conduct additional
analyses outside of RSMTool.To this end, all of the tables produced in the experiment report are saved as files in the
format as specified by file_format parameter in the output directory. The following sections describe all of the
intermediate files that are produced.

Note: The names of all files begin with the experiment_id provided by the user in the experiment configuration file.
In addition, the names for certain columns are set to default values in these files irrespective of what they were named
in the original data files. This is because RSMTool standardizes these column names internally for convenience. These
values are:

• spkitemid for the column containing response IDs.

• sc1 for the column containing the human scores used as training labels.

• sc2 for the column containing the second human scores, if this column was specified in the configuration file.

• length for the column containing response length, if this column was specified in the configuration file.

• candidate for the column containing candidate IDs, if this column was specified in the configuration file.

Feature values

filenames: train_features, test_features, train_preprocessed_features,
test_preprocessed_features

These files contain the raw and pre-processed feature values for the training and evaluation sets. They include only
includes the rows that were used for training/evaluating the models after filtering. For models with feature selection,
these files only include the features that ended up being included in the model.

Note: By default RSMTool filters out non-numeric feature values and non-numeric/zero human scores from both the
training and evaluation sets. Zero scores can be kept by setting the exclude_zero_scores to false.

Flagged responses

filenames: train_responses_with_excluded_flags, test_responses_with_excluded_flags

These files contain all of the rows in the training and evaluation sets that were filtered out based on conditions specified
in flag_column.

Note: If the training/evaluation files contained columns with internal names such as sc1 or length but these columns
were not actually used by rsmtool, these columns will also be included into these files but their names will be changed
to ##name## (e.g. ##sc1##).
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Excluded responses

filenames: train_excluded_responses, test_excluded_responses

These files contain all of the rows in the training and evaluation sets that were filtered out because of feature values
or scores. For models with feature selection, these files only include the features that ended up being included in the
model.

Response metadata

filenames: train_metadata, test_metadata

These files contain the metadata columns (id_column, subgroups if provided) for the rows in the training and evalu-
ation sets that were not excluded for some reason.

Unused columns

filenames: train_other_columns, test_other_columns

These files contain all of the columns from the original features files that are not present in the *_feature and
*_metadata files. They only include the rows from the training and evaluation sets that were not filtered out.

Note: If the training/evaluation files contained columns with internal names such as sc1 or length but these columns
were not actually used by rsmtool, these columns will also be included into these files but their names will be changed
to ##name## (e.g. ##sc1##).

Response length

filename: train_response_lengths

If length_column is specified, then this file contains the values from that column for the training data under a column
called length with the response IDs under the spkitemid column.

Human scores

filename: test_human_scores

This file contains the human scores for the evaluation data under a column called sc1 with the response IDs under
the spkitemid column. If second_human_score_column was specfied, then it also contains the values from that
column under a column called sc2. Only the rows that were not filtered out are included.

Note: If exclude_zero_scores was set to true (the default value), all zero scores in the
second_human_score_column will be replaced by nan.
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Data composition

filename: data_composition

This file contains the total number of responses in training and evaluation set and the number of overlapping responses.
If applicable, the table will also include the number of different subgroups for each set.

Excluded data composition

filenames: train_excluded_composition, test_excluded_composition

These files contain the composition of the set of excluded responses for the training and evaluation sets, e.g., why were
they excluded and how many for each such exclusion.

Missing features

filename: train_missing_feature_values

This file contains the total number of non-numeric values for each feature. The counts in this table are based only on
those responses that have a numeric human score in the training data.

Subgroup composition

filename: data_composition_by_<SUBGROUP>

There will be one such file for each of the specified subgroups and it contains the total number of responses in that
subgroup in both the training and evaluation sets.

Feature descriptives

filenames: feature_descriptives, feature_descriptivesExtra

The first file contains the main descriptive statistics (mean,std. dev., correlation with human score etc.) for all features
included in the final model. The second file contains percentiles, mild, and extreme outliers for the same set of features.
The values in both files are computed on raw feature values before pre-processing.

Feature outliers

filename: feature_outliers

This file contains the number and percentage of outlier values truncated to [MEAN-4*SD, MEAN+4*SD] during
feature pre-processing for each feature included in the final model.

Inter-feature and score correlations

filenames: cors_orig, cors_processed

The first file contains the pearson correlations between each pair of (raw) features and between each (raw) feature and
the human score. The second file is the same but with the pre-processed feature values instead of the raw values.
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Marginal and partial correlations with score

filenames: margcor_score_all_data, pcor_score_all_data, `pcor_score_no_length_all_data

The first file contains the marginal correlations between each pre-processed feature and human score. The second
file contains the partial correlation between each pre-processed feature and human score after controlling for all other
features. The third file contains the partial correlations between each pre-processed feature and human score after
controlling for response length, if length_column was specified in the configuration file.

Marginal and partial correlations with length

filenames: margcor_length_all_data, pcor_length_all_data

The first file contains the marginal correlations between each pre-processed feature and response length, if
length_column was specified. The second file contains the partial correlations between each pre-processed feature
and response length after controlling for all other features, if length_column was specified in the configuration file.

Principal components analyses

filenames: pca, pcavar

The first file contains the results of a Principal Components Analysis (PCA) using pre-processed feature values from
the training set and its singular value decomposition. The second file contains the eigenvalues and variance explained
by each component.

Various correlations by subgroups

Each of following files may be produced for every subgroup, assuming all other information was also available.

• margcor_score_by_<SUBGROUP>: the marginal correlations between each pre-processed feature and human
score, computed separately for the subgroup.

• pcor_score_by_<SUBGROUP>: the partial correlations between pre-processed features and human score after
controlling for all other features, computed separately for the subgroup.

• pcor_score_no_length_by_<SUBGROUP>: the partial correlations between each pre-processed feature and
human score after controlling for response length (if available), computed separately for the subgroup.

• margcor_length_by_<SUBGROUP>: the marginal correlations between each feature and response length (if
available), computed separately for each subgroup.

• pcor_length_by_<SUBGROUP>: partial correlations between each feature and response length (if available)
after controlling for all other features, computed separately for each subgroup.

Note: All of the feature descriptive statistics, correlations (including those for subgroups), and PCA are computed
only on the training set.
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Model information

• feature: pre-processing parameters for all features used in the model.

• coefficients: model coefficients and intercept (for built-in models only).

• coefficients_scaled: scaled model coefficients and intercept (linear models only). Although RSMTool
generates scaled scores by scaling the predictions of the model, it is also possible to achieve the same result by
scaling the coefficients instead. This file shows those scaled coefficients.

• betas: standardized and relative coefficients (for built-in models only).

• model_fit: R squared and adjusted R squared computed on the training set. Note that these values are always
computed on raw predictions without any trimming or rounding.

• .model: the serialized RSMTool Modeler object containing the fitted SKLL Learner object (before scaling
the coeffcients).

• .ols: a serialized object of type pandas.stats.ols.OLS containing the fitted model (for built-in models
excluding LassoFixedLambda and PositiveLassoCV).

• ols_summary.txt: a text file containing a summary of the above model (for built-in models excluding
LassoFixedLabmda and PositiveLassoCV)

• postprocessing_params: the parameters for trimming and scaling predicted scores. Useful for generating
predictions on new data.

Predictions

filenames: pred_processed, pred_train

The first file contains the predicted scores for the evaluation set and the second file contains the predicted scores for the
responses in the training set. Both of them contain the raw scores as well as different types of post-processed scores.

Evaluation metrics

• eval: This file contains the descriptives for predicted and human scores (mean, std.dev etc.) as well as the
association metrics (correlation, quadartic weighted kappa, SMD etc.) for the raw as well as the post-processed
scores.

• eval_by_<SUBGROUP>: the same information as in *_eval.csv computed separately for each subgroup. However,
rather than SMD, a difference of standardized means (DSM) will be calculated using z-scores.

• eval_short: a shortened version of eval that contains specific descriptives for predicted and human scores
(mean, std.dev etc.) and association metrics (correlation, quadartic weighted kappa, SMD etc.) for specific
score types chosen based on recommendations by Williamson (2012). Specifically, the following columns are
included (the raw or scale version is chosen depending on the value of the use_scaled_predictions in the
configuration file).

– h_mean

– h_sd

– corr

– sys_mean [raw/scale_trim]

– sys_sd [raw/scale_trim]

– SMD [raw/scale_trim]
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– adj_agr [raw/scale_trim_round]

– exact_agr [raw/scale_trim_round]

– kappa [raw/scale_trim_round]

– wtkappa [raw/scale_trim]

– sys_mean [raw/scale_trim_round]

– sys_sd [raw/scale_trim_round]

– SMD [raw/scale_trim_round]

– R2 [raw/scale_trim]

– RMSE [raw/scale_trim]

• score_dist: the distributions of the human scores and the rounded raw/scaled predicted scores, depending on
the value of use_scaled_predictions.

• confMatrix: the confusion matrix between the human scores and the rounded raw/scaled predicted scores,
depending on the value of use_scaled_predictions.

Note: Please note that for raw scores, SMD values are likely to be affected by possible differences in scale.

• true_score_eval: evaluation of how well system scores can predict true scores.

Human-human Consistency

These files are created only if a second human score has been made available via the second_human_score_column
option in the configuration file.

• consistency: contains descriptives for both human raters as well as the agreement metrics between their ratings.

• consistency_by_<SUBGROUP>: contains the same metrics as in consistency file computed separately for
each group. However, rather than SMD, a difference of standardized means (DSM) will be calculated using
z-scores.

• degradation: shows the differences between human-human agreement and machine-human agreement for all
association metrics and all forms of predicted scores.

• confMatrix_h1h2: the confusion matrix between the human scores for double-scored responses.

Evaluations based on test theory

• disattenuated_correlations: shows the correlation between human-machine scores, human-human scores,
and the disattenuated human-machine correlation computed as human-machine correlation divided by the square
root of human-human correlation.

• disattenuated_correlations_by_<SUBGROUP>: contains the same metrics as in
disattenuated_correlations file computed separately for each group.

• true_score_eval: evaluations of system scores against estimated true score. Contains total counts of single
and double-scored response, variance of human rater error, estimated true score variance, and mean squared
error (MSE) and proportional reduction in mean squared error (PRMSE) when predicting true score using system
score.
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Additional fairness analyses

These files contain the results of additional fairness analyses suggested in suggested in Loukina, Madnani, & Zechner,
2019.

• <METRICS>_by_<SUBGROUP>.ols: a serialized object of type pandas.stats.ols.OLS containing the fitted
model for estimating the variance attributed to a given subgroup membership for a given metric. The subgroups
are defined by the configuration file. The metrics are osa (overall score accuracy), osd (overall score difference),
and csd (conditional score difference).

• <METRICS>_by_<SUBGROUP>_ols_summary.txt: a text file containing a summary of the above model

• estimates_<METRICS>_by_<SUBGROUP>`: coefficients, confidence intervals and p-values estimated by the
model for each subgroup.

• fairness_metrics_by_<SUBGROUP>: the 𝑅2 (percentage of variance) and p-values for all models.

1.6.5 Built-in RSMTool Linear Regression Models

Models which use the full feature set

• LinearRegression: A model that learns empirical regression weights using ordinary least squares regression
(OLS).

• EqualWeightsLR: A model with all feature weights set to 1.0; a naive model.

• ScoreWeightedLR: a model that learns empirical regression weights using weighted least sqaures. The weights
are determined based on the number of responses with different score levels. Score levels with lower number of
responses are assigned higher weight.

• RebalancedLR - empirical regression weights are rebalanced by using a small portion of positive weights to
replace negative beta values. This model has no negative coefficients.

Models with automatic feature selection

• LassoFixedLambdaThenLR: A model that learns empirical OLS regression weights with feature selection using
Lasso regression with all coefficients set to positive. The hyperparameter lambda is set to sqrt(n-lg(p))
where n is the number of responses and p is the number of features. This approach was chosen to balance the
penalties for error vs. penalty for two many coefficients to force Lasso perform more aggressive feature selection,
so it may not necessarily achieve the best possible performance. The feature set selected by LASSO is then used
to fit an OLS linear regression. Note that while the original Lasso model is constrained to positive coefficients
only, small negative coefficients may appear when the coefficients are re-estimated using OLS regression.

• PositiveLassoCVThenLR: A model that learns empirical OLS regression weights with feature selection using
Lasso regression with all coefficients set to positive. The hyperparameter lambda is optimized using crossvali-
dation for loglikehood. The feature set selected by LASSO is then used to fit an OLS linear regression. Note that
this approach will likely produce a model with a large N features and any advantages of running Lasso would be
effectively negated by latter adding those features to OLS regression.

• NNLR: A model that learns empirical OLS regression weights with feature selection using non-negative least
squares regression. Note that only the coefficients are constrained to be positive: the intercept can be either
positive or negative.

• NNLRIterative: A model that learns empirical OLS regression weights with feature selection using an iterative
implementation of non-negative least squares regression. Under this implementation, an initial OLS model is fit.
Then, any variables whose coefficients are negative are dropped and the model is re-fit. Any coefficients that are
still negative after re-fitting are set to zero.
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• LassoFixedLambdaThenNNLR: A model that learns empirical OLS regression weights with feature selection
using Lasso regression as above followed by non-negative least squares regression. The latter ensures that no
feature has negative coefficients even when the coefficients are estimated using least squares without penalization.

• LassoFixedLambda: same as LassoFixedLambdaThenLR but the model uses the original Lasso weights. Note
that the coefficients in Lasso model are estimated using an optimization routine which may produce slightly
different results on different systems.

• PositiveLassoCV: same as PositiveLassoCVThenLR but using the original Lasso weights. Please note: the
coefficients in Lasso model are estimated using an optimization routine which may produce slightly different
results on different systems.

Note:

1. NNLR, NNLRIterative, LassoFixedLambdaThenNNLR, LassoFixedLambda and PositiveLassoCV all have
no negative coefficients.

2. For all feature selection models, the final set of features will be saved in the feature folder in the experiment
output directory.

1.7 Advanced Uses of RSMTool

In addition to providing the rsmtool utility training and evaluating regression-based scoring models, the RSMTool
package also provides six other command-line utilities for more advanced users.

1.7.1 rsmeval - Evaluate external predictions

RSMTool provides the rsmeval command-line utility to evaluate existing predictions and generate a report with all
the built-in analyses. This can be useful in scenarios where the user wants to use more sophisticated machine learning
algorithms not available in RSMTool to build the scoring model but still wants to be able to evaluate that model’s
predictions using the standard analyses.

For example, say a researcher has an existing automated scoring engine for grading short responses that extracts the
features and computes the predicted score. This engine uses a large number of binary, sparse features. She cannot use
rsmtool to train her model since it requires numeric features. So, she uses scikit-learn to train her model.

Once the model is trained, the researcher wants to evaluate her engine’s performance using the analyses recommended
by the educational measurement community as well as conduct additional investigations for specific subgroups of
test-takers. However, these kinds of analyses are not available in scikit-learn. She can use rsmeval to set up a
customized report using a combination of existing and custom sections and quickly produce the evaluation that is useful
to her.

Tutorial

For this tutorial, you first need to install RSMTool and make sure the conda environment in which you installed it is
activated.
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Workflow

rsmeval is designed for evaluating existing machine scores. Once you have the scores computed for all the responses
in your data, the next steps are fairly straightforward:

1. Create a data file in one of the supported formats containing the computed system scores and the human scores
you want to compare against.

2. Create an experiment configuration file describing the evaluation experiment you would like to run.

3. Run that configuration file with rsmeval and generate the experiment HTML report as well as the intermediate
CSV files.

4. Examine the HTML report to check various aspects of model performance.

Note that the above workflow does not use any customization features , e.g., choosing which sections to include in the
report or adding custom analyses sections etc. However, we will stick with this workflow for our tutorial since it is
likely to be the most common use case.

ASAP Example

We are going to use the same example from 2012 Kaggle competition on automated essay scoring that we used for the
rsmtool tutorial.

Generate scores

rsmeval is designed for researchers who have developed their own scoring engine for generating scores and would like
to produce an evaluation report for those scores. For this tutorial, we will use the scores we generated for the ASAP2
evaluation set using rsmtool tutorial.

Create a configuration file

The next step is to create an experiment configuration file in .json format.

1 {
2 "experiment_id": "ASAP2_evaluation",
3 "description": "Evaluation of the scores generated using rsmtool.",
4 "predictions_file": "ASAP2_scores.csv",
5 "system_score_column": "system",
6 "human_score_column": "human",
7 "id_column": "ID",
8 "trim_min": 1,
9 "trim_max": 6,

10 "second_human_score_column": "human2",
11 "scale_with": "asis"
12 }

Let’s take a look at the options in our configuration file.

• Line 2: We define an experiment ID.

• Line 3: We also provide a description which will be included in the experiment report.

• Line 4: We list the path to the file with the predicted and human scores. For this tutorial we used .csv format,
but RSMTool also supports several other input file formats.
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• Line 5: This field indicates that the system scores in our .csv file are located in a column named system.

• Line 6: This field indicates that the human (reference) scores in our .csv file are located in a column named
human.

• Line 7: This field indicates that the unique IDs for the responses in the .csv file are located in columns named
ID.

• Lines 8-9: These fields indicate that the lowest score on the scoring scale is a 1 and the highest score is a 6. This
information is usually part of the rubric used by human graders.

• Line 10: This field indicates that scores from a second set of human graders are also available (useful for com-
paring the agreement between human-machine scores to the agreement between two sets of humans) and are
located in the human2 column in the .csv file.

• Line 11: This field indicates that the provided machine scores are already re-scaled to match the distribution of
human scores. rsmeval itself will not perform any scaling and the report will refer to these as scaled scores.

Documentation for all of the available configuration options is available here.

Note: You can also use our nifty capability to automatically generate rsmeval configuration files rather than creating
them manually.

Run the experiment

Now that we have our scores in the right format and our configuration file in .json format, we can use the rsmeval
command-line script to run our evaluation experiment.

$ cd examples/rsmeval
$ rsmeval config_rsmeval.json

This should produce output like:

Output directory: /Users/nmadnani/work/rsmtool/examples/rsmeval
Assuming given system predictions are already scaled and will be used as such.
predictions: /Users/nmadnani/work/rsmtool/examples/rsmeval/ASAP2_scores.csv
Processing predictions
Saving pre-processed predictions and the metadata to disk
Running analyses on predictions
Starting report generation
Merging sections
Exporting HTML
Executing notebook with kernel: python3

Once the run finishes, you will see the output, figure, and report sub-directories in the current direc-
tory. Each of these directories contain useful information but we are specifically interested in the report/
ASAP2_evaluation_report.html file, which is the final evaluation report.
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Examine the report

Our experiment report contains all the information we would need to evaluate the provided system scores against the
human scores. It includes:

1. The distributions for the human versus the system scores.

2. Several different metrics indicating how well the machine’s scores agree with the humans’.

3. Information about human-human agreement and the difference between human-human and human-system agree-
ment.

. . . and much more.

Input

rsmeval requires a single argument to run an experiment: the path to a configuration file. It can also take an output
directory as an optional second argument. If the latter is not specified, rsmeval will use the current directory as the
output directory.

Here are all the arguments to the rsmeval command-line script.

config_file

The JSON configuration file for this experiment.

output_dir (optional)

The output directory where all the files for this experiment will be stored.

-f, --force

If specified, the contents of the output directory will be overwritten even if it already contains the output of
another rsmeval experiment.

-h, --help

Show help message and exist.

-V, --version

Show version number and exit.

Experiment configuration file

This is a file in .json format that provides overall configuration options for an rsmeval experiment. Here’s an example
configuration file for rsmeval.

Note: To make it easy to get started with rsmeval, we provide a way to automatically generate configurations file
both interactively as well as non-interactively. Novice users will find interactive generation more helpful while more
advanced users will prefer non-interactive generation. See this page for more details.

Next, we describe all of the rsmeval configuration fields in detail. There are four required fields and the rest are all
optional. We first describe the required fields and then the optional ones (sorted alphabetically).

44 Chapter 1. Documentation

https://github.com/EducationalTestingService/rsmtool/blob/main/examples/rsmeval/config_rsmeval.json
https://github.com/EducationalTestingService/rsmtool/blob/main/examples/rsmeval/config_rsmeval.json


Rater Scoring Modeling Tool, Release 11.3.0

experiment_id

An identifier for the experiment that will be used to name the report and all intermediate files. It can be any combination
of alphanumeric values, must not contain spaces, and must not be any longer than 200 characters.

predictions_file

The path to the file with predictions to evaluate. The file should be in one of the supported formats. Each row should
correspond to a single response and contain the predicted and observed scores for this response. In addition, there
should be a column with a unique identifier (ID) for each response. The path can be absolute or relative to the location
of the configuration file.

system_score_column

The name for the column containing the scores predicted by the system. These scores will be used for evaluation.

trim_min

The single numeric value for the lowest possible integer score that the machine should predict. This value will be used
to compute the floor value for trimmed (bound) machine scores as trim_min - trim_tolerance.

trim_max

The single numeric value for the highest possible integer score that the machine should predict. This value will be used
to compute the ceiling value for trimmed (bound) machine scores as trim_max + trim_tolerance.

Note: Although the trim_min and trim_max fields are optional for rsmtool, they are required for rsmeval.

candidate_column (Optional)

The name for an optional column in prediction file containing unique candidate IDs. Candidate IDs are different from
response IDs since the same candidate (test-taker) might have responded to multiple questions.

custom_sections (Optional)

A list of custom, user-defined sections to be included into the final report. These are IPython notebooks (.ipynb files)
created by the user. The list must contains paths to the notebook files, either absolute or relative to the configuration
file. All custom notebooks have access to some pre-defined variables.
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description (Optional)

A brief description of the experiment. This will be included in the report. The description can contain spaces and
punctuation. It’s blank by default.

exclude_zero_scores (Optional)

By default, responses with human scores of 0 will be excluded from evaluations. Set this field to false if you want to
keep responses with scores of 0. Defaults to true.

file_format (Optional)

The format of the intermediate files. Options are csv, tsv, or xlsx. Defaults to csv if this is not specified.

flag_column (Optional)

This field makes it possible to only use responses with particular values in a given column (e.g. only responses with
a value of 0 in a column called ADVISORY). The field takes a dictionary in Python format where the keys are the
names of the columns and the values are lists of values for responses that will be evaluated. For example, a value of
{"ADVISORY": 0} will mean that rsmeval will only use responses for which the ADVISORY column has the value
0. Defaults to None.

Note: If several conditions are specified (e.g., {"ADVISORY": 0, "ERROR": 0}) only those responses which
satisfy all the conditions will be selected for further analysis (in this example, these will be the responses where the
ADVISORY column has a value of 0 and the ERROR column has a value of 0).

Note: When reading the values in the supplied dictionary, rsmeval treats numeric strings, floats and integers as the
same value. Thus 1, 1.0, "1" and "1.0" are all treated as the 1.0.

general_sections (Optional)

RSMTool provides pre-defined sections for rsmeval (listed below) and, by default, all of them are included in the
report. However, you can choose a subset of these pre-defined sections by specifying a list as the value for this field.

• data_description: Shows the total number of responses, along with any responses have been excluded due
to non-numeric/zero scores or flag columns.

• data_description_by_group: Shows the total number of responses for each of the subgroups specified in the
configuration file. This section only covers the responses used to evaluate the model.

• consistency: shows metrics for human-human agreement, the difference (“degradation”) between the human-
human and human-system agreement, and the disattenuated human-machine correlations. This notebook is only
generated if the config file specifies second_human_score_column.

• evaluation: Shows the standard set of evaluations recommended for scoring models on the evaluation data:

– a table showing human-system association metrics;

– the confusion matrix; and
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– a barplot showing the distributions for both human and machine scores.

• evaluation by group: Shows barplots with the main evaluation metrics by each of the subgroups specified
in the configuration file.

• fairness_analyses: Additional fairness analyses suggested in Loukina, Madnani, & Zechner, 2019. The
notebook shows:

– percentage of variance in squared error explained by subgroup membership

– percentage of variance in raw (signed) error explained by subgroup membership

– percentage of variance in raw (signed) error explained by subgroup membership when controlling for human
score

– plots showing estimates for each subgroup for each model

• true_score_evaluation: evaluation of system scores against the true scores estimated according to test the-
ory. The notebook shows:

– Number of single and double-scored responses.

– Variance of human rater errors and estimated variance of true scores

– Mean squared error (MSE) and proportional reduction in mean squared error (PRMSE) when predicting
true score with system score.

• intermediate_file_paths: Shows links to all of the intermediate files that were generated while running the
evaluation.

• sysinfo: Shows all Python packages along with versions installed in the current environment while generating
the report.

human_score_column (Optional)

The name for the column containing the human scores for each response. The values in this column will be used as
observed scores. Defaults to sc1.

Note: All responses with non-numeric values or zeros in either human_score_column or system_score_column
will be automatically excluded from evaluation. You can use exclude_zero_scores (Optional) to keep responses with
zero scores.

id_column (Optional)

The name of the column containing the response IDs. Defaults to spkitemid, i.e., if this is not specified, rsmeval
will look for a column called spkitemid in the prediction file.
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min_items_per_candidate (Optional)

An integer value for the minimum number of responses expected from each candidate. If any candidates have fewer
responses than the specified value, all responses from those candidates will be excluded from further analysis. Defaults
to None.

min_n_per_group (Optional)

A single numeric value or a dictionary with keys as the group names listed in the subgroups field and values as the
thresholds for the groups. When specified, only groups with at least this number of instances will be displayed in the
tables and plots contained in the report. Note that this parameter only affects the HTML report and the figures. For
all analyses – including the computation of the population parameters – data from all groups will be used. In addition,
the intermediate files will still show the results for all groups.

Note: If you supply a dictionary, it must contain a key for every subgroup listed in subgroups field. If no threshold is
to be applied for some of the groups, set the threshold value for this group to 0 in the dictionary.

rater_error_variance (Optional)

True score evaluations require an estimate of rater error variance. By default, rsmevalwill compute this variance from
double-scored responses in the data. However, in some cases, one may wish to compute the variance on a different
sample of responses. In such cases, this field can be used to set the rater error variance to a precomputed value which is
then used as-is by rsmeval. You can use the rsmtool.utils.variance_of_errors function to compute rater error variance
outside the main evaluation pipeline.

scale_with (Optional)

In many scoring applications, system scores are re-scaled so that their mean and standard deviation match those of the
human scores for the training data.

If you want rsmeval to re-scale the supplied predictions, you need to provide – as the value for this field – the path to
a second file in one of the supported formats containing the human scores and predictions of the same system on its
training data. This file must have two columns: the human scores under the sc1 column and the predicted score under
the prediction.

This field can also be set to "asis" if the scores are already scaled. In this case, no additional scaling will be performed
by rsmeval but the report will refer to the scores as “scaled”.

Defaults to "raw" which means that no-rescaling is performed and the report refers to the scores as “raw”.

second_human_score_column (Optional)

The name for an optional column in the test data containing a second human score for each response. If specified,
additional information about human-human agreement and degradation will be computed and included in the report.
Note that this column must contain either numbers or be empty. Non-numeric values are not accepted. Note also that
the exclude_zero_scores (Optional) option below will apply to this column too.
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Note: You do not need to have second human scores for all responses to use this option. The human-human agreement
statistics will be computed as long as there is at least one response with numeric value in this column. For responses
that do not have a second human score, the value in this column should be blank.

section_order (Optional)

A list containing the order in which the sections in the report should be generated. Any specified order must explicitly
list:

1. Either all pre-defined sections if a value for the general_sections field is not specified OR the sections specified
using general_sections, and

2. All custom section names specified using custom_ sections, i.e., file prefixes only, without the path and without
the .ipynb extension, and

3. All special sections specified using special_sections.

special_sections (Optional)

A list specifying special ETS-only sections to be included into the final report. These sections are available only to
ETS employees via the rsmextra package.

subgroups (Optional)

A list of column names indicating grouping variables used for generating analyses specific to each of those defined
subgroups. For example, ["prompt, gender, native_language, test_country"]. These subgroup columns
need to be present in the input predictions file. If subgroups are specified, rsmeval will generate:

• tables and barplots showing human-system agreement for each subgroup on the evaluation set.

trim_tolerance (Optional)

The single numeric value that will be used to pad the trimming range specified in trim_min and trim_max. This
value will be used to compute the ceiling and floor values for trimmed (bound) machine scores as trim_max +
trim_tolerance for ceiling value and trim_min-trim_tolerance for floor value. Defaults to 0.4998.

Note: For more fine-grained control over the trimming range, you can set trim_tolerance to 0 and use trim_min
and trim_max to specify the exact floor and ceiling values.
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use_thumbnails (Optional)

If set to true, the images in the HTML will be set to clickable thumbnails rather than full-sized images. Upon clicking
the thumbnail, the full-sized images will be displayed in a separate tab in the browser. If set to false, full-sized images
will be displayed as usual. Defaults to false.

use_wandb (Optional)

If set to true, the generated reports and all intermediate tables will be logged to Weights & Biases. The Weights &
Biases entity and project name should be specified in the appropriate configuration fields. The tables and plots will be
logged in a section named rsmeval in a new run under the given project, and the report will be added to a reports section
in that run. In addition, some evaluation metrics will be logged to the run’s history, see more details here. Defaults to
false.

wandb_project (Optional)

The Weights & Biases project name if logging to Weights & Biases is enabled. If a project by this name does not
already exist, it will be created.

Important:

1. Before using Weights & Biases for the first time, users should log in and provide their API key as described in
W&B Quickstart guidelines.

2. Note that when using W&B logging, the rsmtool run may take significantly longer due to the network traffic
being sent to W&B.

wandb_entity (Optional)

The Weights & Biases entity name if logging to Weights & Biases is enabled. Entity can be a user name or the name
of a team or organization.

Output

rsmeval produces a set of folders in the output directory. If logging to Weights & Biases is enabled, the reports and
all intermediate files are also logged to the specified Weights & Biases project.

report

This folder contains the final RSMEval report in HTML format as well as in the form of a Jupyter notebook (a .ipynb
file).
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output

This folder contains all of the intermediate files produced as part of the various analyses performed, saved as .csv files.
rsmeval will also save in this folder a copy of the configuration file. Fields not specified in the original configuration
file will be pre-populated with default values.

figure

This folder contains all of the figures generated as part of the various analyses performed, saved as .svg files.

Intermediate files

Although the primary output of rsmeval is an HTML report, we also want the user to be able to conduct additional
analyses outside of rsmeval. To this end, all of the tables produced in the experiment report are saved as files in the
format as specified by file_format parameter in the output directory. The following sections describe all of the
intermediate files that are produced.

Note: The names of all files begin with the experiment_id provided by the user in the experiment configuration file.
In addition, the names for certain columns are set to default values in these files irrespective of what they were named
in the original data files. This is because RSMEval standardizes these column names internally for convenience. These
values are:

• spkitemid for the column containing response IDs.

• sc1 for the column containing the human scores used as observed scores

• sc2 for the column containing the second human scores, if this column was specified in the configuration file.

• candidate for the column containing candidate IDs, if this column was specified in the configuration file.

Predictions

filename: pred_processed

This file contains the post-processed predicted scores: the predictions from the model are truncated, rounded, and
re-scaled (if requested).

Flagged responses

filename: test_responses_with_excluded_flags

This file contains all of the rows in input predictions file that were filtered out based on conditions specified in
flag_column.

Note: If the predictions file contained columns with internal names such as sc1 that were not actually used by
rsmeval, they will still be included in these files but their names will be changed to ##name## (e.g. ##sc1##).
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Excluded responses

filename: test_excluded_responses

This file contains all of the rows in the predictions file that were filtered out because of non-numeric or zero scores.

Response metadata

filename: test_metadata

This file contains the metadata columns (id_column, subgroups if provided) for all rows in the predictions file that
used in the evaluation.

Unused columns

filename: test_other_columns

This file contains all of the the columns from the input predictions file that are not present in the *_pred_processed
and *_metadata files. They only include the rows that were not filtered out.

Note: If the predictions file contained columns with internal names such as sc1 but these columns were not actually
used by rsmeval, these columns will also be included into these files but their names will be changed to ##name##
(e.g. ##sc1##).

Human scores

filename: test_human_scores

This file contains the human scores, if available in the input predictions file, under a column called sc1with the response
IDs under the spkitemid column.

If second_human_score_columnwas specfied, then it also contains the values in the predictions file from that column
under a column called sc2. Only the rows that were not filtered out are included.

Note: If exclude_zero_scores was set to true (the default value), all zero scores in the
second_human_score_column will be replaced by nan.

Data composition

filename: data_composition

This file contains the total number of responses in the input predictions file. If applicable, the table will also include
the number of different subgroups.
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Excluded data composition

filenames: test_excluded_composition

This file contains the composition of the set of excluded responses, e.g., why were they excluded and how many for
each such exclusion.

Subgroup composition

filename: data_composition_by_<SUBGROUP>

There will be one such file for each of the specified subgroups and it contains the total number of responses in that
subgroup.

Evaluation metrics

• eval: This file contains the descriptives for predicted and human scores (mean, std.dev etc.) as well as the
association metrics (correlation, quadartic weighted kappa, SMD etc.) for the raw as well as the post-processed
scores.

• eval_by_<SUBGROUP>: the same information as in *_eval.csv computed separately for each subgroup. However,
rather than SMD, a difference of standardized means (DSM) will be calculated using z-scores.

• eval_short: a shortened version of eval that contains specific descriptives for predicted and human scores
(mean, std.dev etc.) and association metrics (correlation, quadartic weighted kappa, SMD etc.) for specific
score types chosen based on recommendations by Williamson (2012). Specifically, the following columns are
included (the raw or scale version is chosen depending on the value of the use_scaled_predictions in the
configuration file).

– h_mean

– h_sd

– corr

– sys_mean [raw/scale trim]

– sys_sd [raw/scale trim]

– SMD [raw/scale trim]

– adj_agr [raw/scale trim_round]

– exact_agr [raw/scale trim_round]

– kappa [raw/scale trim_round]

– wtkappa [raw/scale trim]

– sys_mean [raw/scale trim_round]

– sys_sd [raw/scale trim_round]

– SMD [raw/scale trim_round]

– R2 [raw/scale trim]

– RMSE [raw/scale trim]

• score_dist: the distributions of the human scores and the rounded raw/scaled predicted scores, depending on
the value of use_scaled_predictions.
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• confMatrix: the confusion matrix between the the human scores and the rounded raw/scaled predicted scores,
depending on the value of use_scaled_predictions.

Note: Please note that for raw scores, SMD values are likely to be affected by possible differences in scale.

Human-human Consistency

These files are created only if a second human score has been made available via the second_human_score_column
option in the configuration file.

• consistency: contains descriptives for both human raters as well as the agreement metrics between their ratings.

• consistency_by_<SUBGROUP>: contains the same metrics as in consistency file computed separately for
each group. However, rather than SMD, a difference of standardized means (DSM) will be calculated using
z-scores.

• degradation: shows the differences between human-human agreement and machine-human agreement for all
association metrics and all forms of predicted scores.

Evaluations based on test theory

• disattenuated_correlations: shows the correlation between human-machine scores, human-human scores,
and the disattenuated human-machine correlation computed as human-machine correlation divided by the square
root of human-human correlation.

• disattenuated_correlations_by_<SUBGROUP>: contains the same metrics as in
disattenuated_correlations file computed separately for each group.

• true_score_eval: evaluations of system scores against estimated true score. Contains total counts of single
and double-scored response, variance of human rater error, estimated true score variance, and mean squared
error (MSE) and proportional reduction in mean squared error (PRMSE) when predicting true score using system
score.

Additional fairness analyses

These files contain the results of additional fairness analyses suggested in suggested in Loukina, Madnani, & Zechner,
2019.

• <METRICS>_by_<SUBGROUP>.ols: a serialized object of type pandas.stats.ols.OLS containing the fitted
model for estimating the variance attributed to a given subgroup membership for a given metric. The subgroups
are defined by the configuration file. The metrics are osa (overall score accuracy), osd (overall score difference),
and csd (conditional score difference).

• <METRICS>_by_<SUBGROUP>_ols_summary.txt: a text file containing a summary of the above model

• estimates_<METRICS>_by_<SUBGROUP>`: coefficients, confidence intervals and p-values estimated by the
model for each subgroup.

• fairness_metrics_by_<SUBGROUP>: the 𝑅2 (percentage of variance) and p-values for all models.
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1.7.2 rsmpredict - Generate new predictions

RSMTool provides the rsmpredict command-line utility to generate predictions for new data using a model already
trained using the rsmtool utility. This can be useful when processing a new set of responses to the same task without
needing to retrain the model.

rsmpredict pre-processes the feature values according to user specifications before using them to generate the pre-
dicted scores. The generated scores are post-processed in the same manner as they are in rsmtool output.

Note: No score is generated for responses with non-numeric values for any of the features included into the model.

If the original model specified transformations for some of the features and these transformations led to NaN or Inf
values when applied to the new data, rsmpredict will raise a warning. No score will be generated for such responses.

Tutorial

For this tutorial, you first need to install RSMTool and make sure the conda environment in which you installed it is
activated.

Workflow

Important: Although this tutorial provides feature values for the purpose of illustration, rsmpredict does not include
any functionality for feature extraction; the tool is designed for researchers who use their own NLP/Speech processing
pipeline to extract features for their data.

rsmpredict allows you to generate the scores for new data using an existing model trained using RSMTool. Therefore,
before starting this tutorial, you first need to complete rsmtool tutorial which will produce a train RSMTool model.
You will also need to process the new data to extract the same features as the ones used in the model.

Once you have the features for the new data and the RSMTool model, using rsmpredict is fairly straightforward:

1. Create a file containing the features for the new data. The file should be in one of the supported formats.

2. Create an experiment configuration file describing the experiment you would like to run.

3. Run that configuration file with rsmpredict to generate the predicted scores.

Note: You do not need human scores to run rsmpredict since it does not produce any evaluation analyses.
If you do have human scores for the new data and you would like to evaluate the system on this new data, you
can first run rsmpredict to generate the predictions and then run rsmeval on the output of rsmpredict to
generate an evaluation report.
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ASAP Example

We are going to use the same example from 2012 Kaggle competition on automated essay scoring that we used for the
rsmtool tutorial. Specifically, We are going to use the linear regression model we trained in that tutorial to generate
scores for new data.

Note: If you have not already completed that tutorial, please do so now. You may need to complete it again if you
deleted the output files.

Extract features

We will first need to generate features for the new set of responses for which we want to predict scores. For this
experiment, we will simply re-use the test set from the rsmtool tutorial.

Note: The features used with rsmpredict should be generated using the same NLP/Speech processing pipeline that
generated the features used in the rsmtool modeling experiment.

Create a configuration file

The next step is to create an rsmpredict experiment configuration file in .json format.

1 {
2 "experiment_dir": "../rsmtool",
3 "experiment_id": "ASAP2",
4 "input_features_file": "../rsmtool/test.csv",
5 "id_column": "ID",
6 "human_score_column": "score",
7 "second_human_score_column": "score2"
8 }

Let’s take a look at the options in our configuration file.

• Line 2: We give the path to the directory containing the output of the rsmtool experiment.

• Line 3: We provide the experiment_id of the rsmtool experiment used to train the model. This can usually
be read off the output/<experiment_id>.model file in the rsmtool experiment output directory.

• Line 4: We list the path to the data file with the feature values for the new data. For this tutorial we used .csv
format, but RSMTool also supports several other input file formats.

• Line 5: This field indicates that the unique IDs for the responses in the .csv file are located in a column named
ID.

• Lines 6-7: These fields indicates that there are two sets of human scores in our .csv file located in the columns
named score and score2. The values from these columns will be added to the output file containing the
predictions which can be useful if we want to evaluate the predictions using rsmeval.

Documentation for all of the available configuration options is available here.
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Note: You can also use our nifty capability to automatically generate rsmpredict configuration files rather than
creating them manually.

Run the experiment

Now that we have the model, the features in the right format, and our configuration file in .json format, we can use
the rsmpredict command-line script to generate the predictions and to save them in predictions.csv.

$ cd examples/rsmpredict
$ rsmpredict config_rsmpredict.json predictions.csv

This should produce output like:

WARNING: The following extraneous features will be ignored: {'spkitemid', 'sc1', 'sc2',
→˓'LENGTH'}
Pre-processing input features
Generating predictions
Rescaling predictions
Trimming and rounding predictions
Saving predictions to /Users/nmadnani/work/rsmtool/examples/rsmpredict/predictions.csv

You should now see a file named predictions.csv in the current directory which contains the predicted scores for
the new data in the predictions column.

Input

rsmpredict requires two arguments to generate predictions: the path to a configuration file and the path to the output
file where the generated predictions are saved in .csv format.

If you also want to save the pre-processed feature values,``rsmpredict`` can take a third optional argument --features
to specify the path to a .csv file to save these values.

Here are all the arguments to the rsmpredict command-line script.

config_file

The JSON configuration file for this experiment.

output_file

The output .csv file where predictions will be saved.

--features <preproc_feats_file>

If specified, the pre-processed values for the input features will also be saved in this .csv file.

-h, --help

Show help message and exist.

-V, --version

Show version number and exit.
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Experiment configuration file

This is a file in .json format that provides overall configuration options for an rsmpredict experiment. Here’s an
example configuration file for rsmpredict.

Note: To make it easy to get started with rsmpredict, we provide a way to automatically generate configurations
file both interactively as well as non-interactively. Novice users will find interactive generation more helpful while
more advanced users will prefer non-interactive generation. See this page for more details.

Next, we describe all of the rsmpredict configuration fields in detail. There are three required fields and the rest are
all optional. We first describe the required fields and then the optional ones (sorted alphabetically).

experiment_dir

The path to the directory containing rsmtool model to use for generating predictions. This directory must contain a
sub-directory called output with the model files, feature pre-processing parameters, and score post-processing param-
eters. The path can be absolute or relative to the location of configuration file.

experiment_id

The experiment_id used to create the rsmtool model files being used for generating predictions. If you do not know
the experiment_id, you can find it by looking at the prefix of the .model file under the output directory.

input_feature_file

The path to the file with the raw feature values that will be used for generating predictions. The file should be in one of
the supported formats Each row should correspond to a single response and contain feature values for this response. In
addition, there should be a column with a unique identifier (ID) for each response. The path can be absolute or relative
to the location of config file. Note that the feature names must be the same as used in the original rsmtool experiment.

Note: rsmpredict will only generate predictions for responses in this file that have numeric values for the features
included in the rsmtool model.

See also:

rsmpredict does not require human scores for the new data since it does not evaluate the generated predictions. If
you do have the human scores and want to evaluate the new predictions, you can use the rsmeval command-line utility.

candidate_column (Optional)

The name for the column containing unique candidate IDs. This column will be named candidate in the output file
with predictions.
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file_format (Optional)

The format of the intermediate files. Options are csv, tsv, or xlsx. Defaults to csv if this is not specified.

flag_column (Optional)

See description in the rsmtool configuration file for further information. No filtering will be done by rsmpredict, but
the contents of all specified columns will be added to the predictions file using the original column names.

human_score_column (Optional)

The name for the column containing human scores. This column will be renamed to sc1.

id_column (Optional)

The name of the column containing the response IDs. Defaults to spkitemid, i.e., if this is not specified, rsmpredict
will look for a column called spkitemid in the prediction file.

There are several other options in the configuration file that, while not directly used by rsmpredict, can simply be
passed through from the input features file to the output predictions file. This can be particularly useful if you want to
subsequently run rsmeval to evaluate the generated predictions.

predict_expected_scores (Optional)

If the original model was a probabilistic SKLL classifier, then expected scores — probability-weighted averages over a
contiguous, numeric score points — can be generated as the machine predictions instead of the most likely score point,
which would be the default. Set this field to true to compute expected scores as predictions. Defaults to false.

Note:

1. If the model in the original rsmtool experiment is an SVC, that original experiment must have been run with
predict_expected_scores set to true. This is because SVC classifiers are fit differently if probabilistic
output is desired, in contrast to other probabilistic SKLL classifiers.

2. You may see slight differences in expected score predictions if you run the experiment on different machines or
on different operating systems most likely due to very small probability values for certain score points which can
affect floating point computations.

second_human_score_column (Optional)

The name for the column containing the second human score. This column will be renamed to sc2.
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standardize_features (Optional)

If this option is set to false features will not be standardized by dividing by the mean and multiplying by the standard
deviation. Defaults to true.

subgroups (Optional)

A list of column names indicating grouping variables used for generating analyses specific to each of those defined
subgroups. For example, ["prompt, gender, native_language, test_country"]. All these columns will be
included into the predictions file with the original names.

truncate_outliers (Optional)

If this option is set to false, outliers (values more than 4 standard deviations away from the mean) in feature columns
will _not_ be truncated. Defaults to true.

use_wandb (Optional)

If set to true, the generated report and the predictions table will be logged to Weights & Biases. The Weights & Biases
entity and project name should be specified in the appropriate configuration fields. The predictions table will be logged
in a section named rsmpredict in a new run under the given project, and the report will be added to a reports section in
that run. Defaults to false.

wandb_project (Optional)

The Weights & Biases project name if logging to Weights & Biases is enabled. If a project by this name does not
already exist, it will be created.

Important:

1. Before using Weights & Biases for the first time, users should log in and provide their API key as described in
W&B Quickstart guidelines.

2. Note that when using W&B logging, the rsmtool run may take significantly longer due to the network traffic
being sent to W&B.

wandb_entity (Optional)

The Weights & Biases entity name if logging to Weights & Biases is enabled. Entity can be a user name or the name
of a team or organization.
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Output

rsmpredict produces a .csv file with predictions for all responses in new data set, and, optionally, a .csv file
with pre-processed feature values. If any of the responses had non-numeric feature values in the original data or
after applying transformations, these are saved in a file name PREDICTIONS_NAME_excluded_responses.csvwhere
PREDICTIONS_NAME is the name of the predictions file supplied by the user without the extension.

The predictions .csv file contains the following columns:

• spkitemid : the unique resonse IDs from the original feature file.

• sc1 and sc2 : the human scores for each response from the original feature file (human_score_column and
second_human_score_column, respectively.

• raw : raw predictions generated by the model.

• raw_trim, raw_trim_round, scale, scale_trim, scale_trim_round : raw scores post-processed in dif-
ferent ways.

If logging to Weights & Biases is enabled, these csv files are also logged to the specified Weights & Biases project.

1.7.3 rsmcompare - Create a detailed comparison of two scoring models

RSMTool provides the rsmcompare command-line utility to compare two models and to generate a detailed comparison
report including differences between the two models. This can be useful in many scenarios, e.g., say the user wants to
compare the changes in model performance after adding a new feature into the model. To use rsmcompare, the user
must first run two experiments using either rsmtool or rsmeval. rsmcompare can then be used to compare the outputs
of these two experiments to each other.

Note: Currently rsmcompare takes the outputs of the analyses generated during the original experiments and creates
comparison tables. These comparison tables were designed with a specific comparison scenario in mind: comparing
a baseline model with a model which includes new feature(s). The tool can certianly be used for other comparison
scenarios if the researcher feels that the generated comparison output is appropriate.

rsmcompare can be used to compare:

1. Two rsmtool experiments, or

2. Two rsmeval experiments, or

3. An rsmtool experiment with an rsmeval experiment (in this case, only the evaluation analyses will be com-
pared).

Note: It is strongly recommend that the original experiments as well as the comparison experiment are all done using
the same version of RSMTool.
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Tutorial

For this tutorial, you first need to install RSMTool and make sure the conda environment in which you installed it is
activated.

Workflow

rsmcompare is designed to compare two existing rsmtool or rsmeval experiments. To use rsmcompare you need:

1. Two experiments that were run using rsmtool or rsmeval.

2. Create an experiment configuration file describing the comparison experiment you would like to run.

3. Run that configuration file with rsmcompare and generate the comparison experiment HTML report.

4. Examine HTML report to compare the two models.

Note that the above workflow does not use the customization features of rsmcompare, e.g., choosing which sections to
include in the report or adding custom analyses sections etc. However, we will stick with this workflow for our tutorial
since it is likely to be the most common use case.

ASAP Example

We are going to use the same example from 2012 Kaggle competition on automated essay scoring that we used for the
rsmtool tutorial.

Run rsmtool (or rsmeval) experiments

rsmcompare compares the results of the two existing rsmtool (or rsmeval) experiments. For this tutorial, we will
compare model trained in the rsmtool tutorial to itself.

Note: If you have not already completed that tutorial, please do so now. You may need to complete it again if you
deleted the output files.

Create a configuration file

The next step is to create an experiment configuration file in .json format.

1 {
2 "comparison_id": "ASAP2_vs_ASAP2",
3 "experiment_id_old": "ASAP2",
4 "experiment_dir_old": "../rsmtool/",
5 "description_old": "RSMTool experiment.",
6 "use_scaled_predictions_old": true,
7 "experiment_id_new": "ASAP2",
8 "experiment_dir_new": "../rsmtool",
9 "description_new": "RSMTool experiment (copy).",

10 "use_scaled_predictions_new": true
11 }

Let’s take a look at the options in our configuration file.
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• Line 2: We provide an ID for the comparison experiment.

• Line 3: We provide the experiment_id for the experiment we want to use as a baseline.

• Line 4: We also give the path to the directory containing the output of the original baseline experiment.

• Line 5: We give a short description of this baseline experiment. This will be shown in the report.

• Line 6: This field indicates that the baseline experiment used scaled scores for some evaluation analyses.

• Line 7: We provide the experiment_id for the new experiment. We use the same experiment ID for both
experiments since we are comparing the experiment to itself.

• Line 8: We also give the path to the directory containing the output of the new experiment. As above, we use
the same path because we are comparing the experiment to itself.

• Line 9: We give a short description of the new experiment. This will also be shown in the report.

• Line 10: This field indicates that the new experiment also used scaled scores for some evaluation analyses.

Documentation for all of the available configuration options is available here.

Note: You can also use our nifty capability to automatically generate rsmcompare configuration files rather than
creating them manually.

Run the experiment

Now that we have the two experiments we want to compare and our configuration file in .json format, we can use the
rsmcompare command-line script to run our comparison experiment.

$ cd examples/rsmcompare
$ rsmcompare config_rsmcompare.json

This should produce output like:

Output directory: /Users/nmadnani/work/rsmtool/examples/rsmcompare
Starting report generation
Merging sections
Exporting HTML
Executing notebook with kernel: python3

Once the run finishes, you will see an HTML file named ASAP2_vs_ASAP2_report.html. This is the final
rsmcompare comparison report.

Examine the report

Our experiment report contains all the information we would need to compare the new model to the baseline model. It
includes:

1. Comparison of feature distributions between the two experiments.

2. Comparison of model coefficients between the two experiments.

3. Comparison of model performance between the two experiments.
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Note: Since we are comparing the experiment to itself, the comparison is not very interesting, e.g., the differences
between various values will always be 0.

Input

rsmcompare requires a single argument to run an experiment: the path to a configuration file. It can also take an output
directory as an optional second argument. If the latter is not specified, rsmcompare will use the current directory as
the output directory.

Here are all the arguments to the rsmcompare command-line script.

config_file

The JSON configuration file for this experiment.

output_dir (optional)

The output directory where the report files for this comparison will be stored.

-h, --help

Show help message and exist.

-V, --version

Show version number and exit.

Experiment configuration file

This is a file in .json format that provides overall configuration options for an rsmcompare experiment. Here’s an
example configuration file for rsmcompare.

Note: To make it easy to get started with rsmcompare, we provide a way to automatically generate configurations
file both interactively as well as non-interactively. Novice users will find interactive generation more helpful while
more advanced users will prefer non-interactive generation. See this page for more details.

Next, we describe all of the rsmcompare configuration fields in detail. There are seven required fields and the rest are
all optional. We first describe the required fields and then the optional ones (sorted alphabetically).

comparison_id

An identifier for the comparison experiment that will be used to name the report. It can be any combination of alphanu-
meric values, must not contain spaces, and must not be any longer than 200 characters.
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experiment_id_old

An identifier for the “baseline” experiment. This ID should be identical to the experiment_id used when the baseline
experiment was run, whether rsmtool or rsmeval. The results for this experiment will be listed first in the comparison
report.

experiment_id_new

An identifier for the experiment with the “new” model (e.g., the model with new feature(s)). This ID should be iden-
tical to the experiment_id used when the experiment was run, whether rsmtool or rsmeval. The results for this
experiment will be listed first in the comparison report.

experiment_dir_old

The directory with the results for the “baseline” experiment. This directory is the output directory that was used for
the experiment and should contain subdirectories output and figure generated by rsmtool or rsmeval.

experiment_dir_new

The directory with the results for the experiment with the new model. This directory is the output directory that was
used for the experiment and should contain subdirectories output and figure generated by rsmtool or rsmeval.

description_old

A brief description of the “baseline” experiment. The description can contain spaces and punctuation.

description_new

A brief description of the experiment with the new model. The description can contain spaces and punctuation.

custom_sections (Optional)

A list of custom, user-defined sections to be included into the final report. These are IPython notebooks (.ipynb files)
created by the user. The list must contains paths to the notebook files, either absolute or relative to the configuration
file. All custom notebooks have access to some pre-defined variables.

general_sections (Optional)

RSMTool provides pre-defined sections for rsmcompare (listed below) and, by default, all of them are included in the
report. However, you can choose a subset of these pre-defined sections by specifying a list as the value for this field.

• feature_descriptives: Compares the descriptive statistics for all raw feature values included in the model:

– a table showing mean, standard deviation, skewness and kurtosis;

– a table showing the number of truncated outliers for each feature; and

– a table with percentiles and outliers;
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– a table with correlations between raw feature values and human score in each model and the correlation
between the values of the same feature in these two models. Note that this table only includes features and
responses which occur in both training sets.

• features_by_group: Shows boxplots for both experiments with distributions of raw feature values by each of
the subgroups specified in the configuration file.

• preprocessed_features: Compares analyses of preprocessed features:

– histograms showing the distributions of preprocessed features values;

– the correlation matrix between all features and the human score;

– a table showing marginal correlations between all features and the human score; and

– a table showing partial correlations between all features and the human score.

• preprocessed_features_by_group: Compares analyses of preprocessed features by subgroups: marginal
and partial correlations between each feature and human score for each subgroup.

• consistency: Compares metrics for human-human agreement, the difference (‘degradation’) between the
human-human and human-system agreement, and the disattenuated correlations for the whole dataset and by
each of the subgroups specified in the configuration file.

• score_distributions:

– tables showing the distributions for both human and machine scores; and

– confusion matrices for human and machine scores.

• model: Compares the parameters of the two regression models. For linear models, it also includes the standard-
ized and relative coefficients.

• evaluation: Compares the standard set of evaluations recommended for scoring models on the evaluation data.

• true_score_evaluation: compares the evaluation of system scores against the true scores estimated accord-
ing to test theory. The notebook shows:

– Number of single and double-scored responses.

– Variance of human rater errors and estimated variance of true scores

– Mean squared error (MSE) and proportional reduction in mean squared error (PRMSE) when predicting
true score with system score.

• pca: Shows the results of principal components analysis on the processed feature values for the new model only:

– the principal components themselves;

– the variances; and

– a Scree plot.

• notes: Notes explaining the terminology used in comparison reports.

• sysinfo: Shows all Python packages along with versions installed in the current environment while generating
the report.
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section_order (Optional)

A list containing the order in which the sections in the report should be generated. Any specified order must explicitly
list:

1. Either all pre-defined sections if a value for the general_sections field is not specified OR the sections specified
using general_sections, and

2. All custom section names specified using custom_ sections, i.e., file prefixes only, without the path and without
the .ipynb extension, and

3. All special sections specified using special_sections.

special_sections (Optional)

A list specifying special ETS-only comparison sections to be included into the final report. These sections are available
only to ETS employees via the rsmextra package.

subgroups (Optional)

A list of column names indicating grouping variables used for generating analyses specific to each of those defined
subgroups.For example, ["prompt, gender, native_language, test_country"].

Note: In order to include subgroups analyses in the comparison report, both experiments must have been run with the
same set of subgroups.

use_scaled_predictions_old (Optional)

Set to true if the “baseline” experiment used scaled machine scores for confusion matrices, score distributions, sub-
group analyses, etc. Defaults to false.

use_scaled_predictions_new (Optional)

Set to true if the experiment with the new model used scaled machine scores for confusion matrices, score distributions,
subgroup analyses, etc. Defaults to false.

Warning: For rsmtool and rsmeval, primary evaluation analyses are computed on both raw and scaled scores,
but some analyses (e.g., the confusion matrix) are only computed for either raw or re-scaled scores based on the
value of use_scaled_predictions. rsmcompare uses the existing outputs and does not perform any additional
evaluations. Therefore if this field was set to true in the original experiment but is set to false for rsmcompare,
the report will be internally inconsistent: some evaluations use raw scores whereas others will use scaled scores.
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use_thumbnails (Optional)

If set to true, the images in the HTML will be set to clickable thumbnails rather than full-sized images. Upon clicking
the thumbnail, the full-sized images will be displayed in a separate tab in the browser. If set to false, full-sized images
will be displayed as usual. Defaults to false.

use_wandb (Optional)

If set to true, the generated reports and all intermediate tables will be logged to Weights & Biases. The Weights &
Biases entity and project name should be specified in the appropriate configuration fields. The report will be added to
a reports section in a new run under the given project. Defaults to false.

wandb_project (Optional)

The Weights & Biases project name if logging to Weights & Biases is enabled. If a project by this name does not
already exist, it will be created.

Important:

1. Before using Weights & Biases for the first time, users should log in and provide their API key as described in
W&B Quickstart guidelines.

2. Note that when using W&B logging, the rsmtool run may take significantly longer due to the network traffic
being sent to W&B.

wandb_entity (Optional)

The Weights & Biases entity name if logging to Weights & Biases is enabled. Entity can be a user name or the name
of a team or organization.

Output

rsmcompare produces the comparison report in HTML format as well as in the form of a Jupyter notebook (a .ipynb
file) in the output directory. If logging to Weights & Biases is enabled, the report will be also logged to the specified
Weights & Biases project.

1.7.4 rsmsummarize - Compare multiple scoring models

RSMTool provides the rsmsummarize command-line utility to compare multiple models and to generate a comparison
report. Unlike rsmcompare which creates a detailed comparison report between the two models, rsmsummarize can
be used to create a more general overview of multiple models.

rsmsummarize can be used to compare:

1. Multiple rsmtool experiments, or

2. Multiple rsmeval experiments, or

3. A mix of rsmtool and rsmeval experiments (in this case, only the evaluation analyses will be compared).
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Note: It is strongly recommend that the original experiments as well as the summary experiment are all done using
the same version of RSMTool.

Tutorial

For this tutorial, you first need to install RSMTool and make sure the conda environment in which you installed it is
activated.

Workflow

rsmsummarize is designed to compare several existing rsmtool or rsmeval experiments. To use rsmsummarize
you need:

1. Two or more experiments that were run using rsmtool or rsmeval.

2. Create an experiment configuration file describing the comparison experiment you would like to run.

3. Run that configuration file with rsmsummarize and generate the comparison experiment HTML report.

4. Examine HTML report to compare the models.

Note that the above workflow does not use the customization features of rsmsummarize, e.g., choosing which sections
to include in the report or adding custom analyses sections etc. However, we will stick with this workflow for our
tutorial since it is likely to be the most common use case.

ASAP Example

We are going to use the same example from 2012 Kaggle competition on automated essay scoring that we used for the
rsmtool tutorial.

Run rsmtool and rsmeval experiments

rsmsummarize compares the results of the two or more existing rsmtool (or rsmeval) experiments. For this tutorial,
we will compare model trained in the rsmtool tutorial to the evaluations we obtained in the rsmeval tutorial.

Note: If you have not already completed these tutorials, please do so now. You may need to complete them again if
you deleted the output files.

Create a configuration file

The next step is to create an experiment configuration file in .json format.

1 {
2 "summary_id": "model_comparison",
3 "description": "a comparison of the results of the rsmtool sample experiment, rsmeval␣

→˓sample experiment and once again the rsmtool sample experiment",
4 "experiment_dirs": ["../rsmtool", "../rsmeval", "../rsmtool"],
5 "experiment_names":["RSMTool experiment 1", "RSMEval experiment", "RSMTool experiment 2

(continues on next page)
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(continued from previous page)

→˓"]
6 }

Let’s take a look at the options in our configuration file.

• Line 2: We provide the summary_id for the comparison. This will be used to generate the name of the final
report.

• Line 3: We give a short description of this comparison experiment. This will be shown in the report.

• Line 4: We also give the list of paths to the directories containing the outputs of the experiments we want to
compare.

• Line 5: Since we want to compare experiments that all used the same experiment id (ASAP2), we instead list the
names that we want to use for each experiment in the summary report.

Documentation for all of the available configuration options is available here.

Note: You can also use our nifty capability to automatically generate rsmsummarize configuration files rather than
creating them manually.

Run the experiment

Now that we have the list of the experiments we want to compare and our configuration file in .json format, we can
use the rsmsummarize command-line script to run our comparison experiment.

$ cd examples/rsmsummarize
$ rsmsummarize config_rsmsummarize.json

This should produce output like:

Output directory: /Users/nmadnani/work/rsmtool/examples/rsmsummarize
Starting report generation
Merging sections
Exporting HTML
Executing notebook with kernel: python3

Once the run finishes, you will see a new folder report containing an HTML file named
model_comparison_report.html. This is the final rsmsummarize summary report.

Examine the report

Our experiment report contains the overview of main aspects of model performance. It includes:

1. Brief description of all experiments.

2. Information about model parameters and model fit for all rsmtool experiments.

3. Model performance for all experiments.

Note: Some of the information such as model fit and model parameters are only available for rsmtool experiments.
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Input

rsmsummarize requires a single argument to run an experiment: the path to a configuration file. You can specify
which models you want to compare and the name of the report by supplying the path to a configuration file. It can
also take an output directory as an optional second argument. If the latter is not specified, rsmsummarize will use the
current directory as the output directory.

Here are all the arguments to the rsmsummarize command-line script.

config_file

The JSON configuration file for this experiment.

output_dir (optional)

The output directory where the report and intermediate .csv files for this comparison will be stored.

-f, --force

If specified, the contents of the output directory will be overwritten even if it already contains the output of
another rsmsummarize experiment.

-h, --help

Show help message and exist.

-V, --version

Show version number and exit.

Experiment configuration file

This is a file in .json format that provides overall configuration options for an rsmsummarize experiment. Here’s an
example configuration file for rsmsummarize.

Note: To make it easy to get started with rsmsummarize, we provide a way to automatically generate configurations
file both interactively as well as non-interactively. Novice users will find interactive generation more helpful while
more advanced users will prefer non-interactive generation. See this page for more details.

Next, we describe all of the rsmsummarize configuration fields in detail. There are two required fields and the rest are
all optional. We first describe the required fields and then the optional ones (sorted alphabetically).

summary_id

An identifier for the rsmsummarize experiment. This will be used to name the report. It can be any combination of
alphanumeric values, must not contain spaces, and must not be any longer than 200 characters.

experiment_dirs

The list of the directories with the results of the experiment. These directories should be the output directories used for
each experiment and should contain subdirectories output and figure generated by rsmtool or rsmeval.

1.7. Advanced Uses of RSMTool 71

https://github.com/EducationalTestingService/rsmtool/blob/main/examples/rsmsummarize/config_rsmsummarize.json


Rater Scoring Modeling Tool, Release 11.3.0

custom_sections (Optional)

A list of custom, user-defined sections to be included into the final report. These are IPython notebooks (.ipynb files)
created by the user. The list must contains paths to the notebook files, either absolute or relative to the configuration
file. All custom notebooks have access to some pre-defined variables.

description (Optional)

A brief description of the summary. The description can contain spaces and punctuation.

experiment_names (Optional)

The list of experiment names to use in the summary report and intermediate files. The names should be listed in the
same order as the experiments in experiment_dirs. When this field is not specified, the report will show the original
experiment_id for each experiment.

file_format (Optional)

The format of the intermediate files generated by rsmsummarize. Options are csv, tsv, or xlsx. Defaults to csv if
this is not specified.

Note: In the rsmsummarize context, the file_format parameter refers to the format of the intermediate files gen-
erated by rsmsummarize, not the intermediate files generated by the original experiment(s) being summarized. The
format of these files does not have to match the format of the files generated by the original experiment(s).

general_sections (Optional)

RSMTool provides pre-defined sections for rsmsummarize (listed below) and, by default, all of them are included in
the report. However, you can choose a subset of these pre-defined sections by specifying a list as the value for this field.

• preprocessed_features : compares marginal and partial correlations between all features and the human
score, and optionally response length if this was computed for any of the models.

• model: Compares the parameters of the two regression models. For linear models, it also includes the standard-
ized and relative coefficients.

• evaluation: Compares the standard set of evaluations recommended for scoring models on the evaluation data.

• true_score_evaluation: compares the evaluation of system scores against the true scores estimated accord-
ing to test theory. The notebook shows:

– Number of single and double-scored responses.

– Variance of human rater errors and estimated variance of true scores

– Mean squared error (MSE) and proportional reduction in mean squared error (PRMSE) when predicting
true score with system score.

• intermediate_file_paths: Shows links to all of the intermediate files that were generated while running the
summary.

• sysinfo: Shows all Python packages along with versions installed in the current environment while generating
the report.
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section_order (Optional)

A list containing the order in which the sections in the report should be generated. Any specified order must explicitly
list:

1. Either all pre-defined sections if a value for the general_sections field is not specified OR the sections specified
using general_sections, and

2. All custom section names specified using custom_ sections, i.e., file prefixes only, without the path and without
the .ipynb extension, and

3. All special sections specified using special_sections.

special_sections (Optional)

A list specifying special ETS-only comparison sections to be included into the final report. These sections are available
only to ETS employees via the rsmextra package.

use_thumbnails (Optional)

If set to true, the images in the HTML will be set to clickable thumbnails rather than full-sized images. Upon clicking
the thumbnail, the full-sized images will be displayed in a separate tab in the browser. If set to false, full-sized images
will be displayed as usual. Defaults to false.

use_wandb (Optional)

If set to true, the generated report will be logged to Weights & Biases. The Weights & Biases entity and project name
should be specified in the appropriate configuration fields. The report will be added to a reports section in a new run
under the given project. Defaults to false.

wandb_project (Optional)

The Weights & Biases project name if logging to Weights & Biases is enabled. If a project by this name does not
already exist, it will be created.

Important:

1. Before using Weights & Biases for the first time, users should log in and provide their API key as described in
W&B Quickstart guidelines.

2. Note that when using W&B logging, the rsmtool run may take significantly longer due to the network traffic
being sent to W&B.
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wandb_entity (Optional)

The Weights & Biases entity name if logging to Weights & Biases is enabled. Entity can be a user name or the name
of a team or organization.

Output

rsmsummarize produces a set of folders in the output directory. If logging to Weights & Biases is enabled, the reports
and all intermediate files are also logged to the specified Weights & Biases project.

report

This folder contains the final rsmsummarize report in HTML format as well as in the form of a Jupyter notebook (a
.ipynb file).

output

This folder contains all of the intermediate files produced as part of the various analyses performed, saved as .csv
files. rsmsummarize will also save in this folder a copy of the configuration file. Fields not specified in the original
configuration file will be pre-populated with default values.

figure

This folder contains all of the figures that may be generated as part of the various analyses performed, saved as .svg
files. Note that no figures are generated by the existing rsmsummarize notebooks.

Intermediate files

Although the primary output of RSMSummarize is an HTML report, we also want the user to be able to conduct
additional analyses outside of RSMTool. To this end, all of the tables produced in the experiment report are saved as
files in the format as specified by file_format parameter in the output directory. The following sections describe
all of the intermediate files that are produced.

Note: The names of all files begin with the summary_id provided by the user in the experiment configuration file.

Marginal and partial correlations with score

filenames: margcor_score_all_data, pcor_score_all_data, `pcor_score_no_length_all_data

The first file contains the marginal correlations between each pre-processed feature and human score. The second
file contains the partial correlation between each pre-processed feature and human score after controlling for all other
features. The third file contains the partial correlations between each pre-processed feature and human score after
controlling for response length, if length_column was specified in the configuration file.
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Model information

• model_summary

This file contains the main information about the models included into the report including:

• Total number of features

• Total number of features with non-negative coefficients

• The learner

• The label used to train the model

• betas: standardized coefficients (for built-in models only).

• model_fit: R squared and adjusted R squared computed on the training set. Note that these values are always
computed on raw predictions without any trimming or rounding.

Note: If the report includes a combination of rsmtool and rsmeval experiments, the summary tables with model
information will only include rsmtool experiments since no model information is available for rsmeval experiments.

Evaluation metrics

• eval_short - descriptives for predicted and human scores (mean, std.dev etc.) and association metrics (cor-
relation, quadartic weighted kappa, SMD etc.) for specific score types chosen based on recommendations by
Williamson (2012). Specifically, the following columns are included (the raw or scale version is chosen de-
pending on the value of the use_scaled_predictions in the configuration file).

– h_mean

– h_sd

– corr

– sys_mean [raw/scale trim]

– sys_sd [raw/scale trim]

– SMD [raw/scale trim]

– adj_agr [raw/scale trim_round]

– exact_agr [raw/scale trim_round]

– kappa [raw/scale trim_round]

– wtkappa [raw/scale trim_round]

– sys_mean [raw/scale trim_round]

– sys_sd [raw/scale trim_round]

– SMD [raw/scale trim_round]

– R2 [raw/scale trim]

– RMSE [raw/scale trim]

Note: Please note that for raw scores, SMD values are likely to be affected by possible differences in scale.
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Evaluations based on test theory

• true_score_eval: evaluations of system scores against estimated true score. Contains total counts of single
and double-scored response, variance of human rater error, estimated true score variance, and mean squared
error (MSE) and proportional reduction in mean squared error (PRMSE) when predicting true score using system
score.

1.7.5 rsmxval - Run cross-validation experiments

RSMTool provides the rsmxval command-line utility to run cross-validation experiments with scoring models. Why
would one want to use cross-validation rather than just using the simple train-and-evaluate loop provided by the
rsmtool utility? Using cross-validation can provide more accurate estimates of scoring model performance since
those estimates are averaged over multiple train-test splits that are randomly selected based on the data. Using a single
train-test split may lead to biased estimates of performance since those estimates will depend on the specific charac-
teristics of that split. Using cross-validation is more likely to provide estimates of how well the scoring model will
generalize to unseen test data, and more easily flag problems with overfitting and selection bias, if any.

Cross-validation experiments in RSMTool consist of the following steps:

1. The given training data file is first shuffled randomly (with a fixed seed for reproducibility) and then split into
the requested number of folds. It is also possible for the user to provide a CSV file containing a pre-determined
set of folds, e.g., from another part of the data pipeline.

2. For each fold (or train-test split), rsmtool is run to train a scoring model on the training split and evaluate
on the test split. All of the outputs for each of the rsmtool runs are saved on disk and represent the per-fold
performance.

3. The predictions generated by rsmtool for each of the folds are all combined into a single file, which is then used
as input for rsmeval. The output of this evaluation run is saved to disk and provides a more accurate estimate
of the predictive performance of a scoring model trained on the given data.

4. A summary report comparing all of the folds is generated by running rsmsummarize on all of the fold directories
created in the Step 1 and its output is also saved to disk. This summary output can be useful to see if the
performance for any of the folds stands out for any reason, which could point to a potential problem.

5. Finally, a scoring model is trained on the complete training data file using rsmtool, which also generates a
report that contains only the feature and model descriptives. The model is what will most likely be deployed for
inference assuming the analyses produced in this step and Steps 1–4 meet the stakeholders’ requirements.

Tutorial

For this tutorial, you first need to install RSMTool and make sure the conda environment in which you installed it is
activated.

Workflow

rsmxval is designed to run cross-validation experiments using a single file containing human scores and features. Just
like rsmtool, rsmxval does not provide any functionality for feature extraction and assumes that users will extract
features on their own. The workflow steps are as follows:

1. Create a data file in one of the supported formats containing the extracted features for each response in the data
along with human score(s) assigned to it.

2. Create an experiment configuration file describing the cross-validation experiment you would like to run.

3. Run that configuration file with rsmxval and generate its outputs.
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4. Examine the various HTML reports to check various aspects of model performance.

Note that unlike rsmtool and rsmeval, rsmxval currently does not support customization of the HTML reports
generated in each step. This functionality may be added in future versions.

ASAP Example

We are going to use the same example from the 2012 Kaggle competition on automated essay scoring that we used for
the rsmtool tutorial.

Extract features

We are using the same features for this data as described in the rsmtool tutorial.

Create a configuration file

The next step is to create an experiment configuration file in .json format.

1 {
2 "experiment_id": "ASAP2_xval",
3 "description": "Cross-validation with two human scores using a LinearRegression␣

→˓model.",
4 "train_file": "train.csv",
5 "folds": 3,
6 "train_label_column": "score",
7 "id_column": "ID",
8 "model": "LinearRegression",
9 "trim_min": 1,

10 "trim_max": 6,
11 "second_human_score_column": "score2",
12 "use_scaled_predictions": true
13 }

Let’s take a look at the options in our configuration file.

• Line 2: We define an experiment ID used to identify the files produced as part of this experiment.

• Line 3: We provide a description which will be included in the various reports.

• Line 4: We list the path to our training file with the feature values and human scores. For this tutorial, we used
.csv format, but several other input file formats are also supported.

• Line 5: This field indicates the number of cross-validation folds we want to use. If this field is not specified,
rsmxval uses 5-fold cross-validation by default.

• Line 6: This field indicates that the human (reference) scores in our .csv file are located in a column named
score.

• Line 7: This field indicates that the unique IDs for the responses in the .csv file are located in a column named
ID.

• Line 8: We choose to use a linear regression model to combine the feature values into a score.

• Lines 9-10: These fields indicate that the lowest score on the scoring scale is a 1 and the highest score is a 6.
This information is usually part of the rubric used by human graders.
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• Line 11: This field indicates that scores from a second set of human graders are also available (useful for com-
paring the agreement between human-machine scores to the agreement between two sets of humans) and are
located in the score2 column in the training .csv file.

• Line 12: Next, we indicate that we would like to use the scaled scores for all our evaluation analyses at each step.

Documentation for all of the available configuration options is available here.

Note: You can also use our nifty capability to automatically generate rsmxval configuration files rather than creating
them manually.

Run the experiment

Now that we have our input file and our configuration file, we can use the rsmxval command-line script to run our
evaluation experiment.

$ cd examples/rsmxval
$ rsmxval config_rsmxval.json output

This should produce output like:

Output directory: output
Saving configuration file.
Generating 3 folds after shuffling
Running RSMTool on each fold in parallel
Progress: 100%|| 3/3 [00:08<00:00, 2.76s/it]
Creating fold summary
Evaluating combined fold predictions
Training model on full data

Once the run finishes, you will see an output sub-directory in the current directory. Under this directory you will see
multiple sub-directories, each corresponding to a different cross-validation step, as described here.

Examine the reports

The cross-validation experiment produces multiple HTML reports – an rsmtool report for each of the 3
folds (output/folds/{01,02,03}/report/ASAP2_xval_fold{01,02,03}.html), the evaluation report
for the cross-validated predictions (output/evaluation/report/ASAP2_xval_evaluation_report.
html), a report summarizing the salient characteristics of the 3 folds (output/fold-summary/report/
ASAP2_xval_fold_summary_report.html), and a report showing the feature and model descriptives (output/
final-model/report/ASAP2_xval_model_report.html). Examining these reports will provide a relatively
complete picture of how well the predictive performance of the scoring model will generalize to unseen data.
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Input

rsmxval requires a single argument to run an experiment: the path to a configuration file. It can also take an output
directory as an optional second argument. If the latter is not specified, rsmxval will use the current directory as the
output directory.

Here are all the arguments to the rsmxval command-line script.

config_file

The JSON configuration file for this cross-validation experiment.

output_dir (optional)

The output directory where all the sub-directories and files for this cross-validation experiment will be stored. If
a non-empty directory with the same name already exists, an error will be raised.

-h, --help

Show help message and exit.

-V, --version

Show version number and exit.

Experiment configuration file

This is a file in .json format that provides overall configuration options for an rsmxval experiment. Here’s an example
configuration file for rsmxval.

Note: To make it easy to get started with rsmxval, we provide a way to automatically generate configuration files
both interactively as well as non-interactively. Novice users will find interactive generation more helpful while more
advanced users will prefer non-interactive generation. See this page for more details.

Configuration files for rsmxval are almost identical to rsmtool configuration files with only a few differences. Next,
we describe the three required rsmxval configuration fields in detail.

experiment_id

An identifier for the experiment that will be used as part of the names of the reports and intermediate files produced
in each of the steps. It can be any combination of alphanumeric values, must not contain spaces, and must not be any
longer than 200 characters. Suffixes are added to this experiment ID by each of the steps for the reports and files they
produce, i.e., _fold<N> in the per-fold rsmtool step where <N> is a two digit number, _evaluation by the rsmeval
evaluation step, _fold_summary by the rsmsummarize step, and _model by the final full-data rsmtool step.

model

The machine learner you want to use to build the scoring model. Possible values include built-in linear regression
models as well as all of the learners available via SKLL. With SKLL learners, you can customize the tuning objective
and also compute expected scores as predictions.
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train_file

The path to the training data feature file in one of the supported formats. Each row should correspond to a single
response and contain numeric feature values extracted for this response. In addition, there should be a column with a
unique identifier (ID) for each response and a column with the human score for each response. The path can be absolute
or relative to config file’s location.

Important: Unlike rsmtool, rsmxval does not accept an evaluation set and will raise an error if the test_file
field is specified.

Next, we will describe the optional fields that are unique to rsmxval.

folds (Optional)

The number of folds to use for cross-validation. This should be an integer and defaults to 5.

folds_file (Optional)

The path to a file containing custom, pre-specified folds to be used for cross-validation. This should be a .csv file
(no other formats are accepted) and should contain only two columns: id and fold. The id column should contain
the same IDs of the responses that are contained in train_file above. The fold column should contain an integer
representing which fold the response with the id belongs to. IDs not specified in this file will be skipped and not
included in the cross-validation at all. Just like train_file, this path can be absolute or relative to the config file’s
location. Here’s an example of a folds file containing 2 folds.

Note: If both folds_file and folds are specified, then the former will take precedence unless it contains a non-
existent path.

use_wandb (Optional)

If set to true, the generated reports and all intermediate tables will be logged to Weights & Biases. The Weights &
Biases entity and project name should be specified in the appropriate configuration fields. A new run will be created
in the specified project and it will include different sections for the different steps of the experiment:

• rsmxval section will include the combined predictions file generated by the folds.

• rsmeval section will include the tables and plots from the evaluation run on the predictions file.

• rsmtool section will include the output of the final rsmtool run that creates the final model.

• All the reports generated in the process will be logged to the reports section.

In addition, some evaluation metrics will be logged to the run’s history with a name representing the context in which
each score is calculated (see more details here).

Note that the output of the individual rsmtool runs for each fold are not logged to W&B.

Defaults to false.

In addition to the fields described so far, an rsmxval configuration file also accepts the following optional fields used
by rsmtool:

• candidate_column
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• description

• exclude_zero_scores

• feature_subset

• feature_subset_file

• features

• file_format

• flag_column

• flag_column_test

• id_column

• length_column

• min_items_per_candidate

• min_n_per_group

• predict_expected_scores

• rater_error_variance

• second_human_score_column

• select_transformations

• sign

• skll_fixed_parameters

• skll_objective

• standardize_features

• subgroups

• train_label_column

• trim_max

• trim_min

• trim_tolerance

• truncate_outliers

• use_scaled_predictions

• use_thumbnails

• use_truncation_thresholds

• skll_grid_search_jobs

• use_wandb

• wandb_entity

• wandb_project

Please refer to these fields’ descriptions on the page describing the rsmtool configuration file.
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Output

rsmxval produces a set of folders in the output directory. If logging to Weights & Biases is enabled, the reports
generated in this run are also logged to the specified Weights & Biases project.

folds

This folder contains the output of each of the per-fold rsmtool experiments. It contains as many sub-folders as the num-
ber of specified folds, named 01, 02, 03, etc. Each of these numbered sub-folders contains the output of one rsmtool
experiment conducted using the training split of that fold as the training data and the test split as the evaluation data.
Each of the sub-folders contains the output directories produced by rsmtool. The report for each fold lives in the report
sub-directory, e.g., the report for the first fold is found at folds/01/report/<experiment_id>_fold01_report.
html, and so on. The messages that are usually printed out by rsmtool to the screen are instead logged to a file and
saved to disk as, e.g., folds/01/rsmtool.log.

evaluation

This folder contains the output of the rsmeval evaluation experiment that uses the cross-validated predictions from
each fold. This folder contains the output directories produced by rsmeval. The evaluation report can be found at
evaluation/report/<experiment_id>_evaluation_report.html. The messages that are usually printed out
by rsmeval to the screen are instead logged to a file and saved to disk as evaluation/rsmeval.log.

fold-summary

This folder contains the output of the rsmsummarize experiment that provides a quick summary of all of the folds
in a single, easily-scanned report. The folder contains the output directories produced by rsmsummarize. The sum-
mary report can be found at fold-summary/report/<experiment_id>_fold_summary_report.html. The mes-
sages that are usually printed out by rsmsummarize to the screen are instead logged to a file and saved to disk as
fold-summary/rsmsummarize.log.

final-model

This folder contains the output of the rsmtool experiment that trains a model on the full training data and provides a
report showing the feature and model descriptives. It contains the output directories produced by rsmtool. The primary
artifacts of this experiment are the report (final-model/report/<experiment_id>_model_report.html) and
the final trained model (final-model/output/<experiment_id>_model.model). The messages that are usually
printed out by rsmtool to the screen are instead logged to a file and saved to disk as final-model/rsmtool.log.

Note: Every rsmtool experiment requires both a training and an evaluation set. However, in this step, we are using
the full training data to train the model and rsmxval does not use a separate test set. Therefore, we simply randomly
sample 10% of the full training data as a dummy test set to make sure that rsmtool runs successfully. The report in
this step only contains the model and feature descriptives and, therefore, does not use this dummy test set at all. Users
should ignore any intermediate files under the final-model/output and final-model/figure sub-directories that
are derived from this dummy test set. If needed, the data used as the dummy test set can be found at final-model/
dummy_test.csv (or in the chosen format).

In addition to these folders, rsmxval will also save a copy of the configuration file in the output directory at the same-
level as the above folders. Fields not specified in the original configuration file will be pre-populated with default
values.
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1.7.6 rsmexplain - Explain non-linear models

RSMTool provides the rsmexplain command-line utility to generate a report explaining the predictions made by a
model trained using the rsmtool utility. These explanations contain useful information about the contribution of each
feature to the final score, even if the model is non-linear or black-box in nature. The rsmexplain command-line utility
uses the SHAP library to compute the explanations.

Note: rsmexplain uses the sampling explainer which is model agnostic and should, in principle, work for any type
of model. However, rsmexplain currently only supports regressors since they are the most popular model type used
for automated scoring.

Tutorial

For this tutorial, you first need to install RSMTool and make sure the conda environment in which you installed it is
activated.

Workflow

rsmexplain is designed to explain the predictions from a model trained as part of an existing rsmtool experiment.
The steps to do this are as follows:

1. Successfully run an rsmtool experiment so that the model we would like to explain is trained and available.

2. Create an experiment configuration file describing the explanation experiment you would like to run.

3. Run the created configuration file with rsmexplain to generate the explanation HTML report.

4. Examine the HTML report to see the explanations for the rsmtool model on the selected responses.

ASAP Example

We are going to use the same example from 2012 Kaggle competition on automated essay scoring that we used for the
rsmtool tutorial.

Run rsmtool experiments with chosen model

rsmexplain requires an existing rsmtool experiment with a trained model. For this tutorial, we will explain the
model trained as part of the rsmtool tutorial.

Note: If you have not already completed the rsmtool tutorial, please do so now. You may need to complete it again
if you deleted the output files.
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Create a configuration file

The next step is to create an experiment configuration file for rsmexplain in .json format.

1 {
2 "description": "Explaining a linear regression model trained on all features.",
3 "experiment_dir": "../rsmtool",
4 "experiment_id": "ASAP2",
5 "background_data": "../rsmtool/train.csv",
6 "explain_data": "../rsmtool/test.csv",
7 "id_column": "ID",
8 "sample_size": 1,
9 "num_features_to_display": 15

10 }

Let’s take a look at the options in our configuration file.

• Line 2: We give a short description of this experiment. This will be shown in the report.

• Line 3: We give the path to the directory containing the output of the original rsmtool` experiment. Note that
this is the top-level directory that contains the output directory produced by rsmtool.

• Line 4: We provide the experiment_id of the rsmtool experiment used to train the model. This can usually be
read off the output/<experiment_id>.model file in the rsmtool experiment output directory.

• Line 5: We provide the path to the data file that will be used as the background distribution.

• Line 6: We provide the path to the data file that will be used to generate the explanations.

• Line 7: This field indicates that the unique IDs for the responses in both data files are located in a column named
ID.

• Line 8: This field indicates that we wish to explain one randomly chosen example from the second data file. If
we wish to explain a specific example from that file, we would use the sample_ids option instead.

• Line 9: This field indicates the number of top features that should be displayed in the plots in the rsmexplain
report.

Documentation for all of the available configuration options is available here.

Note: You can also use our nifty capability to automatically generate rsmexplain configuration files rather than
creating them manually.

Run explanation experiment

Now that we have the rsmtool experiment, the data files, and our configuration file, we can use the rsmexplain
command-line script to run our explanation experiment.

$ cd examples/rsmexplain
$ rsmexplain config_rsmexplain.json

This should produce output like:

Output directory: /Users/nmadnani/work/rsmtool/examples/rsmexplain
Saving configuration file.

(continues on next page)
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(continued from previous page)

WARNING: The following extraneous features will be ignored: {'LENGTH', 'score2', 'score'}
Pre-processing input features
WARNING: The following extraneous features will be ignored: {'LENGTH', 'score2', 'score'}
Pre-processing input features
Generating SHAP explanations for 1 examples from ../rsmtool/test.csv
100%|| 1/1 [00:00<00:00, 21.99it/s]
Merging sections
Exporting HTML
Success

Once the run finishes, you will see the output, figure, and report sub-directories in the current direc-
tory. Each of these directories contain useful information but we are specifically interested in the report/
ASAP2_explain_report.html file, which is the final evaluation report.

Examine the report

Our experiment report contains all the information we would need to explain the trained model. It includes:

1. The various absolute value variants of the SHAP values.

2. Several SHAP plots indicating how different features contribute to the predicted score. Since we chose to explain
a single example in this tutorial, the following plots will be displayed in the report: global bar plot, beeswarm
plot, decision plot, and waterfall plot.

Note: We encourage you to re-run the tutorial by modifying the configuration file to explain multiple
examples instead of a single one. You can do so either by setting sample_size to a value larger than 1, by
explicitly specifying multiple example indices via sample_ids, or by setting sample_range to an appropriate
range of example indices. For a multiple-example explanation run, the following plots will be displayed
in the report: global bar plot, beeswarm plot, and heatmap plots.

Input

rsmexplain requires only one argument to generate the explanation report: the path to a configuration file.

Here are all the arguments to the rsmexplain command-line script.

config_file

The JSON configuration file for this experiment.

output_dir

The output directory where all the files for this experiment will be stored.

-f, --force

If specified, the contents of the output directory will be overwritten even if it already contains the output of
another rsmeval experiment.

-h, --help

Show help message and exist.

-V, --version

Show version number and exit.
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Experiment configuration file

This is a file in .json format that provides overall configuration options for an rsmexplain experiment. Here’s an
example configuration file for rsmexplain.

Note: To make it easy to get started with rsmexplain, we provide a way to automatically generate configurations
file both interactively as well as non-interactively. Novice users will find interactive generation more helpful while
more advanced users will prefer non-interactive generation. See this page for more details.

Next, we describe all of the rsmexplain configuration fields in detail. There are four required fields and the rest are
all optional. We first describe the required fields and then the optional ones (sorted alphabetically).

background_data

The path to the background data feature file in one of the supported formats. Each row should correspond to a single
response and contain the numeric feature values extracted for this response. In addition, there should be a column
containing a unique identifier (ID) for each response. This path can be absolute or relative to the location of the config
file. It must contain at least 300 responses to ensure meaningful explanations.

explain_data

The path to the file containing the data that we want to explain. The file should be in one of the supported formats.
Each row should correspond to a single response and contain numeric feature values extracted for this response. In
addition, there should be a column containing a unique identifier (ID) for each response. The path can be absolute or
relative to the location of config file.

experiment_id

An identifier for the rsmexplain experiment. This will be used to name the report. It can be any combination of
alphanumeric values, must not contain spaces, and must not be any longer than 200 characters.

experiment_dir

The directory containing the rsmtool models we want to explain. This directory should contain an output sub-directory
and that sub-directory should contain two files: the <experiment_id>.model and <experiment_id>_feature.
csv. Note that <experiment_id> refers to the one defined in this same configuration file. As an example of this
directory structure, take a look at the existing_experiment directory here.

background_kmeans_size (Optional)

The size of the k-means sample for background sampling. Defaults to 500. We summarize the dataset specified in
background_data with this many k-means clusters (each cluster is weighted by the number of data points it represents)
and then use the summarized data set for sampling instead of the original. The k-means clustering allows us to speed
up the explanation process but may sacrifice some accuracy. The default value of 500 has been shown to provide a
good balance between speed and accuracy in our experiments. You may use a higher value if you have a very large or
very diverse background dataset and you want to ensure that it’s accurately summarized.
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Warning: background_kmeans_size must be smaller than the size of the original background data. If not, you
may see errors like this: ValueError: n_samples=500 should be >= n_clusters=750.

custom_sections (Optional)

A list of custom, user-defined sections to be included into the final report. These are IPython notebooks (.ipynb files)
created by the user. The list must contains paths to the notebook files, either absolute or relative to the configuration
file. All custom notebooks have access to some pre-defined variables.

description (Optional)

A brief description of the rsmexplain experiment that will be shown at the top of the report. The description can
contain spaces and punctuation.

general_sections (Optional)

RSMTool provides pre-defined sections for rsmexplain (listed below) and, by default, all of them are included in the
report. However, you can choose a subset of these pre-defined sections by specifying a list as the value for this field.

• data_description: Shows the number/identity of responses that are being explained.

• shap_values: Shows different types of SHAP values for the features.

• shap_plots: Shows various SHAP explanation plots for the features.

• sysinfo: Shows all Python packages along with versions installed in the current environment while generating
the report.

id_column (Optional)

The name of the column containing the response IDs. Defaults to spkitemid, i.e., if this is not specified, rsmexplain
will look for a column called spkitemid in both background_data and explain_data files. Note that the name of
the id_column must be the same in these two files.

num_features_to_display (Optional)

Number of top features that should be displayed in rsmexplain plots. Defaults to 15.

sample_ids (Optional)

If we want to explain a specific set of responses from the explain_data, we can specify their IDs here as a comma-
separated string. Note that the IDs must be values from the id_column. For example, if explain_data has IDs of the
form "EXAMPLE_1", "EXAMPLE_2", etc., and we want to explain the fifth, tenth, and twelfth example, the value of this
field must be set to "EXAMPLE_5, EXAMPLE_10, EXAMPLE_12". Defaults to None.
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sample_range (Optional)

If we want to explain a specific range of responses from the explain_data, we can specify that range here. Note that
the range is specified in terms of the location of the responses in the explain_data file and that the locations are
zero-indexed. So, for example, to explain only the first 50 responses in the file, we should set a value of "0-49" for
this option. Defaults to None.

sample_size (Optional)

If we want to explain a random sample of the responses in explain_data, we can specify the size of that random sample
here. For example, to explain a random sample of 10 responses, we would set this to 10. Defaults to None.

Note: Only one of sample_ids, sample_range or sample_size must be specified. If none of them are specified,
explanations will be generated for the entire set of responses in explain_data which could be very slow, depending
on its size.

section_order (Optional)

A list containing the order in which the sections in the report should be generated. Any specified order must explicitly
list:

1. Either all pre-defined sections if a value for the general_sections field is not specified OR the sections specified
using general_sections, and

2. All custom section names specified using custom_sections, i.e., file prefixes only, without the path and without
the .ipynb extension

show_auto_cohorts (Optional)

If this option is set to true, auto cohort bar plots will be displayed. These plots can be useful for detecting interaction
effects between cohorts and features. If a cohort shows a high feature value, then there may be an interaction between
that cohort and the feature. Defaults to false. These plots are not shown by default because these plots may be unstable
or provide misleading information if explain_data is not large enough. For smaller datasets, SHAP may not be able
to detect strong feature interactions and compute clear cohorts. If that happens, the plots will be too specific to be
useful. If you have a large enough dataset, you can set this option to true and see if the plots are useful.

Important: By default, the auto cohort bar plots are treated as a custom section and added at the end of the report,
after the system information section. The section order option can be used to move this section to a different place in
the report. Use "auto_cohorts" as the name for this section when specifying an order.
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standardize_features (Optional)

If this option is set to false, the feature values for the responses in background_data and explain_data will not be
standardized using the mean and standard deviation parameters for the rsmtool experiment. These parameters are ex-
pected to be part of the feature information contained in <experiment_dir>/output/<experiment_id>_feature.
csv. Defaults to true.

Important: If experiment_dir contains the rsmtool configuration file, that file’s value for
standardize_features will override the value specified by the user. The reason is that if rsmtool trained
the model with (or without) standardized features, then rsmexplain must do the same for the explanations to be
meaningful.

truncate_outliers (Optional)

If this option is set to false, outliers (values more than 4 standard deviations away from the mean) in feature columns
will _not_ be truncated. Defaults to true.

use_wandb (Optional)

If set to true, the generated report will be logged to Weights & Biases. The Weights & Biases entity and project name
should be specified in the appropriate configuration fields. The report will be added to a reports section in a new run
under the given project. Defaults to false.

wandb_project (Optional)

The Weights & Biases project name if logging to Weights & Biases is enabled. If a project by this name does not
already exist, it will be created.

Important:

1. Before using Weights & Biases for the first time, users should log in and provide their API key as described in
W&B Quickstart guidelines.

2. Note that when using W&B logging, the rsmtool run may take significantly longer due to the network traffic
being sent to W&B.

wandb_entity (Optional)

The Weights & Biases entity name if logging to Weights & Biases is enabled. Entity can be a user name or the name
of a team or organization.
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Output

rsmexplain produces a set of folders in the output directory. If logging to Weights & Biases is enabled, the reports
are also logged to the specified Weights & Biases project.

report

This folder contains the final explanation report in HTML format as well as in the form of a Jupyter notebook (a .ipynb
file).

output

This folder contains various SHAP values and their absolute value variants. rsmexplain also saves a copy of the
configuration file in this folder. Fields not specified in the original configuration file will be pre-populated with default
values. The SHAP explanation object is saved as <experiment_id>_explanation.pkl and a mapping between the
position of each explained response in the data file and its unique ID is saved in <experiment_id>_ids.pkl.

figure

This folder contains all of the figures containing the various SHAP plots, saved as .svg files.

1.8 Writing custom RSMTool sections

RSMTool allows users to include custom Jupyter notebooks in the reports generated by rsmtool, rsmeval, and rsmcom-
pare using the custom_sections fields in their configuration files. This can be particularly useful if a researcher wants
to include custom analyses specific to their own scoring engine; she can do so while still using the familiar RSMTool
pipeline.

1.8.1 Available variables

When writing such notebooks, some or all of the python variables below will be available for use in the notebooks.

experiment_id

The experiment ID from the respective configuration file.

description

The description string from the respective configuration file.
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model_name

The name of the model from the respective configuration file.

context

Two possible values: rsmtool or rsmeval depending on which command-line tool is being used to generated the
report (not available in rsmcompare notebooks).

use_scaled_predictions

A boolean Python variable containing the value of the setting with the same name from the respective configuration
file.

exclude_zero_scores

A boolean Python variable containing the value of the setting with the same name from the respective configuration
file.

length_column (rsmtool only)

The name of the column in the training and/or evaluation data containing response length. None if not specified in the
configuration file.

second_human_score_column

The name of the column in the evaluation data containing the second human score. None if not specified in the respective
configuration file.

groups_eval

A list containing the names of metadata or subgroup columns as specified in the respective configuration file.

min_items

The minimal number of items expected from each candidate. The value if set to 0 if the user did not specify a minimal
number in the respective configuration file.

features_used (rsmtool only)

A list containing the names of all the features that are used for training the model. [rsmtool only]

In addition, several pandas data frames are also available. Many of these contain the same information produced in the
intermediate CSV files produced by rsmtool or rsmeval. We have made these available to authors of custom notebooks
to avoid the need for reading them from disk.
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df_features (rsmtool only)

A data frame containing information about the feature columns that were included in the final model training. Same
information as in feature.csv.

df_betas (rsmtool only)

Relative and standardized coefficients (betas.csv)

df_train_orig (rsmtool only)

df_test_orig (rsmtool only)

Data frames containing the original training and testing data as specified in the config file, without any changes.

df_train (rsmtool only)

df_train_preproc (rsmtool only)

df_test (rsmtool only)

df_test_preproc (rsmtool only)

Data frames containing the raw and pre-processed feature values.

df_train_other_columns (rsmtool only)

df_test_other_columns

Data frames containing the unused columns from the training and evaluation data.

df_train_responses_with_excluded_flags (rsmtool only)

df_test_responses_with_excluded flags

Data frames containing the flagged responses.

df_train_length (rsmtool only)

A data frame containing response lengths under the length column for the training data, along with the response IDs
under the spkitemid column. These are only available (a) if length_column was specified in the configuration file,
and (b) if no values in that column are missing, and (c) if the values in that column are not distributed with a standard
deviation <= 0.
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df_test_human_scores

A data frame containing the two human scores for the responses in the evaluation data under the sc1 and
sc2 columns, along with the response IDs under the spkitemid column. This frame is only available if sec-
ond_human_score_column was specified in the config file.

Note: This data frame will contain NaN for the responses for which no numeric second human score was available or
for which the second score was 0 and exclude_zero_scores was set to true.

df_pred_preproc

A data frame containing the raw and post-processed predictions for the evaluation data.

df_feature_subset_specs (rsmtool only)

A data frame containing the contents of feature_subset_file if it was specified in configuration file. None if not specified.

Finally, the following variables are also available but you are strong encouraged not to re-read the files under these
directories which are already available as data frames.

output_dir

The output sub-directory under the experiment output directory that contains all the intermediate CSV files.

figure_dir

The figure sub-directory under the experiment output directory that contains all of the generated SVG and PNG
figures.

Note: All dataframes apart from df_train_orig and df_test_orig contain an spkitemid column which contains
the unique response IDs.

All data frames except the df_*_other_columns contain an sc1 column which contains the human score for the
responses.

df_train_orig and df_test_orig will contain the response IDs and human scores under columns with the original
names, not spkitemid and sc1.

1.9 Auto-generating configuration files

Configuration files for rsmtool, rsmeval, rsmexplain, rsmcompare, rsmpredict, rsmsummarize and rsmxval can be dif-
ficult to create manually due to the large number of configuration options supported by these tools. To make this easier
for users, all of these tools support automatic creation of configuration files, both interactively and non-interactively.
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1.9.1 Interactive generation

For novice users, it is easiest to use a guided, interactive mode to generate a configuration file. For example, to generate
an rsmtool configuration file interactively, run the following command:

rsmtool generate --interactive --output example_rsmtool.json

The following screencast shows an example interactive session after the above command is run (click to play):

The configuration file example_rsmtool.json generated via the session is shown below:

{
// Reference: https://rsmtool.readthedocs.io/en/stable/usage_rsmtool.html#experiment-

→˓configuration-file
"experiment_id": "test_rsmtool",
"model": "LinearRegression",
"train_file": "/Users/nmadnani/train.csv",
"test_file": "/Users/nmadnani/test.csv",
// OPTIONAL: replace default values below based on your data.
"candidate_column": null,
"custom_sections": null,
"description": "Test experiment.",
"exclude_zero_scores": true,
"feature_subset": null,
"feature_subset_file": null,
"features": null,
"file_format": "xlsx",
"flag_column": null,
"flag_column_test": null,
"general_sections": [

"data_description",
"feature_descriptives",
"preprocessed_features",
"consistency",
"model",
"evaluation",
"true_score_evaluation",
"pca",
"intermediate_file_paths",
"sysinfo"

],
"id_column": "ID",
"length_column": "length",
"min_items_per_candidate": null,
"min_n_per_group": null,
"predict_expected_scores": false,
"second_human_score_column": null,
"section_order": null,
"select_transformations": false,
"sign": null,
"skll_objective": null,
"special_sections": null,
"standardize_features": true,
"subgroups": [],

(continues on next page)
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(continued from previous page)

"test_label_column": "score",
"train_label_column": "score",
"trim_max": 1,
"trim_min": 6,
"trim_tolerance": 0.4998,
"use_scaled_predictions": true,
"use_thumbnails": false,
"use_truncation_thresholds": false

}

Note: Although we use rsmtool in the example above, the same instructions apply to all 6 tools; simply replace
rsmtool with rsmeval, rsmcompare, etc.

There are some configuration options that can accept multiple inputs. For example, the experiment_dirs option
for rsmsummarize takes a list of rsmtool experiment directories for a summary report. These options are handled
differently in interactive mode. To illustrate this, let’s generate a configuration file for rsmsummarize by using the
following command:

rsmsummarize generate --interactive --output example_rsmsummarize.json

The following screencast shows the interactive session (click to play):

And here is the generated configuration file for rsmsummarize:

{
// Reference: https://rsmtool.readthedocs.io/en/stable/advanced_usage.html#config-

→˓file-rsmsummarize
"summary_id": "test_summary",
"experiment_dirs": [

"/Users/nmadnani/work",
"/Users/nmadnani/work/rsmtool",
"/Users/nmadnani/work/rsmtool/tests"

],
// OPTIONAL: replace default values below based on your data.
"custom_sections": null,
"description": "This is a test.",
"experiment_names": null,
"file_format": "tsv",
"general_sections": [

"preprocessed_features",
"model",
"evaluation",
"true_score_evaluation",
"intermediate_file_paths",
"sysinfo"

],
"section_order": null,
"special_sections": null,
"subgroups": [],
"use_thumbnails": true

}
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Important: If you want to include subgroup information in the reports for rsmtool, rsmeval, rsmcompare,
and rsmxval, you should add --subgroups to the command. For example, when you run rsmeval
generate --interactive --subgroups you would be prompted to enter the subgroup column names and the
general_sections list (if shown1) will also include subgroup-based sections. Since the subgroups option can ac-
cept multiple inputs, it is handled in the same way as the experiment_dirs option for rsmsummarize above.

We end with a list of important things to note about interactive generation:

• Carefully read the instructions and notes displayed at the top when you first enter interactive mode.

• If you do not specify an output file using --output, the generated configuration file will simply be printed out.

• You may see messages like “invalid option” and “invalid file” on the bottom left while you are entering the value
for a field. This is an artifact of real-time validation. For example, when choosing a training file for rsmtool,
the message “invalid file” may be displayed while you navigate to the actual file. Once you get to a valid file, this
message should disappear.

• Required fields will not accept a blank input (just pressing enter) and will show an error message in the bottom
left until a valid input is provided.

• Optional fields will accept blank inputs since they have default values that will be used if no user input is provided.
In some cases, default values are shown underlined in parentheses.

• You can also use -i as an alias for --interactive and -g as an alias for --subgroups. So, for example, if
you want to interactively generate a configuration file with subgroups for rsmtool, just run rsmtool generate
-ig instead of rsmtool generate --interactive --subgroups.

• The configuration files generated interactively contain comments (as indicated by // ...). While RSMTool
handles JSON files with comments just fine, you may need to remove the comments manually if you wish to use
these files outside of RSMTool.

1.9.2 Non-interactive Generation

For more advanced or experienced users who want to quickly get started with a dummy configuration file that they feel
comfortable editing manually, RSMTool also provides the capability to generate configuration files non-interactively.
To do so, simply omit the --interactive switch in the commands above. For example, to generate a dummy config-
uration file for rsmtool, the command to run would be:

rsmtool generate --output dummy_rsmtool.json

When running this command, the following warning would be printed out to stderr:

WARNING: Automatically generated configuration files MUST be edited to add values
for required fields and even for optional ones depending on your data

This warning explains that the generated file cannot be used directly as input to rsmtool since the required fields are
filled with dummy values. This can be confirmed by looking at the configuration file the command generates:

{
// Reference: https://rsmtool.readthedocs.io/en/stable/usage_rsmtool.html#experiment-

→˓configuration-file
// REQUIRED: replace "ENTER_VALUE_HERE" with the appropriate value!
"experiment_id": "ENTER_VALUE_HERE",

(continues on next page)

1 Recall that rsmxval does not support customizing the section list and, therefore, will not display the general_sections field in the auto-
generated configuration file.
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"model": "ENTER_VALUE_HERE",
"train_file": "ENTER_VALUE_HERE",
"test_file": "ENTER_VALUE_HERE",
// OPTIONAL: replace default values below based on your data.
"candidate_column": null,
"custom_sections": null,
"description": "",
"exclude_zero_scores": true,
"feature_subset": null,
"feature_subset_file": null,
"features": null,
"file_format": "csv",
"flag_column": null,
"flag_column_test": null,
"general_sections": [

"data_description",
"feature_descriptives",
"preprocessed_features",
"consistency",
"model",
"evaluation",
"true_score_evaluation",
"pca",
"intermediate_file_paths",
"sysinfo"

],
"id_column": "spkitemid",
"length_column": null,
"min_items_per_candidate": null,
"min_n_per_group": null,
"predict_expected_scores": false,
"second_human_score_column": null,
"section_order": null,
"select_transformations": false,
"sign": null,
"skll_objective": null,
"special_sections": null,
"standardize_features": true,
"subgroups": [],
"test_label_column": "sc1",
"train_label_column": "sc1",
"trim_max": null,
"trim_min": null,
"trim_tolerance": 0.4998,
"use_scaled_predictions": false,
"use_thumbnails": false,
"use_truncation_thresholds": false

}

Note the two comments demarcating the locations of the required and optional fields. Note also that the required fields
are filled with the dummy value “ENTER_VALUE_HERE” that must be manually edited by the user. The optional
fields are filled with default values that may also need to be further edited depending on the data being used.
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Just like interactive generation, non-interactive generation is supported by all 6 tools: rsmtool, rsmeval,
rsmexplain, rsmcompare, rsmpredict, rsmsummarize, and rsmxval.

Similarly, to include subgroup information in the reports for rsmtool, rsmeval, and rsmcompare, just add
--subgroups (or -g) to the command. Note that unlike in interactive mode, this would only add subgroup-based
sections to the general_sections list in the output file. You will need to manually edit the subgroups option in the
configuration file to enter the subgroup column names.

1.9.3 Generation API

Interactive generation is only meant for end users and can only be used via the 6 command-line tools rsmtool,
rsmeval, rsmexplain, rsmcompare, rsmpredict, rsmsummarize, and rsmxval. It cannot be used via the RSM-
Tool API.

However, the non-interactive generation can be used via the API which can be useful for more advanced RSMTool users.
To illustrate, here’s some example Python code to generate a configuration for rsmtool in the form of a dictionary:

# import the ConfigurationGenerator class
from rsmtool.utils.commandline import ConfigurationGenerator

# instantiate it with the options as needed
# we want a dictionary, not a string
# we do not want to see any warnings
# we want to include subgroup-based sections in the report
generator = ConfigurationGenerator('rsmtool',

as_string=False,
suppress_warnings=True,
use_subgroups=True)

# generate the configuration dictionary
configdict = generator.generate()

# remember we still need to replace the dummy values
# for the required fields
configdict["experiment_id"] = "test_experiment"
configdict["model"] = "LinearRegression"
configdict["train_file"] = "train.csv"
configdict["test_file"] = "test.csv"

# and don't forget about adding the subgroups
configdict["subgroups"] = ["GROUP1", "GROUP2"]

# make other changes to optional fields based on your data
...

# now we can use this dictionary to run an rsmtool experiment via the API
from rsmtool import run_experiment
run_experiment(configdict, "/tmp/output")

For more details, refer to the API documentation for the ConfigurationGenerator class.
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1.10 API Documentation

The primary method of using RSMTool is via the command-line scripts rsmtool, rsmeval, rsmpredict, rsmcompare,
and rsmsummarize. However, there are certain functions in the rsmtool API that may also be useful to advanced users
for use directly in their Python code. We document these functions below.

1.10.1 rsmtool Package

rsmtool.run_experiment(config_file_or_obj_or_dict, output_dir, overwrite_output=False, logger=None,
wandb_run=None)

Run an rsmtool experiment using the given configuration.

Run rsmtool experiment using the given configuration file, object, or dictionary. All outputs are generated under
output_dir. If overwrite_output is True, any existing output in output_dir is overwritten.

Parameters

• config_file_or_obj_or_dict (str or pathlib.Path or dict or
Configuration) – Path to the experiment configuration file either a string or as a
pathlib.Path object. Users can also pass a Configuration object that is in memory
or a Python dictionary with keys corresponding to fields in the configuration file. Given a
configuration file, any relative paths in the configuration file will be interpreted relative to
the location of the file. Given a Configuration object, relative paths will be interpreted
relative to the configdir attribute, that _must_ be set. Given a dictionary, the reference
path is set to the current directory.

• output_dir (str) – Path to the experiment output directory.

• overwrite_output (bool, optional) – If True, overwrite any existing output under
output_dir. Defaults to False.

• logger (logging object, optional) – A logging object. If None is passed, get logger
from __name__. Defaults to None.

• wandb_run (wandb.Run) – A wandb run object that will be used to log artifacts and tables. If
None is passed, a new wandb run will be initialized if wandb is enabled in the configuration.
Defaults to None.

Raises

• FileNotFoundError – If any of the files contained in config_file_or_obj_or_dict
cannot be located.

• IOError – If output_dir already contains the output of a previous experiment and
overwrite_output is False.

• ValueError – If the current configuration specifies a non-linear model but output_dir
already contains the output of a previous experiment that used a linear model with the same
experiment ID.

rsmtool.run_evaluation(config_file_or_obj_or_dict, output_dir, overwrite_output=False, logger=None,
wandb_run=None)

Run an rsmeval experiment using the given configuration.

All outputs are generated under output_dir. If overwrite_output is True, any existing output in
output_dir is overwritten.

Parameters
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• config_file_or_obj_or_dict (str or pathlib.Path or dict or
Configuration) – Path to the experiment configuration file either a string or as a
pathlib.Path object. Users can also pass a Configuration object that is in memory
or a Python dictionary with keys corresponding to fields in the configuration file. Given a
configuration file, any relative paths in the configuration file will be interpreted relative to
the location of the file. Given a Configuration object, relative paths will be interpreted
relative to the configdir attribute, that _must_ be set. Given a dictionary, the reference
path is set to the current directory.

• output_dir (str) – Path to the experiment output directory.

• overwrite_output (bool, optional) – If True, overwrite any existing output under
output_dir. Defaults to False.

• logger (logging object, optional) – A logging object. If None is passed, get logger
from __name__. Defaults to None.

• wandb_run (wandb.Run) – A wandb run object that will be used to log artifacts and tables. If
None is passed, a new wandb run will be initialized if wandb is enabled in the configuration.
Defaults to None.

Raises

• FileNotFoundError – If any of the files contained in config_file_or_obj_or_dict
cannot be located.

• IOError – If output_dir already contains the output of a previous experiment and
overwrite_output is False.

rsmtool.run_comparison(config_file_or_obj_or_dict, output_dir)
Run an rsmcompare experiment using the given configuration.

Use the given configuration file, object, or dictionary and generate the report in the given directory.

Parameters

• config_file_or_obj_or_dict (str or pathlib.Path or dict or
Configuration) – Path to the experiment configuration file either a a string or as a
pathlib.Path object. Users can also pass a Configuration object that is in memory
or a Python dictionary with keys corresponding to fields in the configuration file. Given a
configuration file, any relative paths in the configuration file will be interpreted relative to
the location of the file. Given a Configuration object, relative paths will be interpreted
relative to the configdir attribute, that _must_ be set. Given a dictionary, the reference
path is set to the current directory.

• output_dir (str) – Path to the experiment output directory.

Raises

• FileNotFoundError – If either of the two input directories in
config_file_or_obj_or_dict do not exist.

• FileNotFoundError – If the directories do not contain rsmtool outputs at all.

rsmtool.run_summary(config_file_or_obj_or_dict, output_dir, overwrite_output=False, logger=None,
wandb_run=None)

Run rsmsummarize experiment using the given configuration.

Summarize several rsmtool experiments using the given configuration file, object, or dictionary. All outputs are
generated under output_dir. If overwrite_output is True, any existing output in output_dir is overwrit-
ten.
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Parameters

• config_file_or_obj_or_dict (str or pathlib.Path or dict or
Configuration) – Path to the experiment configuration file either a a string or as a
pathlib.Path object. Users can also pass a Configuration object that is in memory
or a Python dictionary with keys corresponding to fields in the configuration file. Given a
configuration file, any relative paths in the configuration file will be interpreted relative to
the location of the file. Given a Configuration object, relative paths will be interpreted
relative to the configdir attribute, that _must_ be set. Given a dictionary, the reference
path is set to the current directory.

• output_dir (str) – Path to the experiment output directory.

• overwrite_output (bool, optional) – If True, overwrite any existing output under
output_dir. Defaults to False.

• logger (logging object, optional) – A logging object. If None is passed, get logger
from __name__. Defaults to None.

• wandb_run (wandb.Run) – A wandb run object that will be used to log artifacts and tables. If
None is passed, a new wandb run will be initialized if wandb is enabled in the configuration.
Defaults to None.

Raises
IOError – If output_dir already contains the output of a previous experiment and
overwrite_output is False.

rsmtool.compute_and_save_predictions(config_file_or_obj_or_dict, output_file, feats_file=None,
logger=None, wandb_run=None)

Run rsmpredict using the given configuration.

Generate predictions using given configuration file, object, or dictionary. Predictions are saved in output_file.
Optionally, pre-processed feature values are saved in feats_file, if specified.

Parameters

• config_file_or_obj_or_dict (str or pathlib.Path or dict or
Configuration) – Path to the experiment configuration file either a a string or as a
pathlib.Path object. Users can also pass a Configuration object that is in memory
or a Python dictionary with keys corresponding to fields in the configuration file. Given a
configuration file, any relative paths in the configuration file will be interpreted relative to
the location of the file. Given a Configuration object, relative paths will be interpreted
relative to the configdir attribute, that _must_ be set. Given a dictionary, the reference
path is set to the current directory.

• output_file (str) – The path to the output file.

• feats_file (str, optional) – Path to the output file for saving preprocessed feature
values.

• logger (logging object, optional) – A logging object. If None is passed, get logger
from __name__. Defaults to None.

• wandb_run (wandb.Run) – A wandb run object that will be used to log artifacts and tables. If
None is passed, a new wandb run will be initialized if wandb is enabled in the configuration.
Defaults to None.

Raises

• FileNotFoundError – If any of the files contained in config_file_or_obj_or_dict
cannot be located.
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• FileNotFoundError – If experiment_dir does not exist.

• FileNotFoundError – If experiment_dir does not contain the required output needed
from an rsmtool experiment.

• RuntimeError – If the name of the output file does not end in “.csv”, “.tsv”, or “.xlsx”.

rsmtool.fast_predict(input_features, modeler, df_feature_info=None, trim=False, trim_min=None,
trim_max=None, trim_tolerance=None, scale=False, train_predictions_mean=None,
train_predictions_sd=None, h1_mean=None, h1_sd=None, logger=None)

Compute predictions for a single instance against given model.

The main difference between this function and the compute_and_save_predictions() function is that the
former is meant for batch prediction and reads all its inputs from disk and writes its outputs to disk. This function,
however, is meant for real-time inference rather than batch. To this end, it operates entirely in memory. Note that
there is still a bit of overlap between the two computation paths since we want to use the RSMTool API as much
as possible.

This function should only be used when the goal is to generate predictions using RSMTool models in production.
The user should read everything from disk in a separate thread/function and pass the inputs to this function.

Note that this function only computes regular predictions, not expected scores.

Parameters

• input_features (dict[str, float]) – A dictionary containing the features for the in-
stance for which to generate the model predictions. The keys should be names of the features
on which the model was trained and the values should be the raw feature values.

• modeler (rsmtool.modeler.Modeler object) – The RSMTool Modeler object from
which the predictions are to be generated. This object should be created from the already
existing .model file in the “output” directory of the previously run RSMTool experiment.

• df_feature_info (pandas DataFrame, optional) – If None, this function will try to
extract this information from modeler.

A DataFrame containing the information regarding the model features. The index of the
dataframe should be the names of the features and the columns should be:

– ”sign” : 1 or -1. Indicates whether the feature value needs to be multiplied by -1.

– ”transform” : transformation that needs to be applied to this feature.

– ”train_mean”, “train_sd” : mean and standard deviation for outlier truncation.

– ”train_transformed_mean”, “train_transformed_sd” : mean and standard deviation for
computing z-scores.

This dataframe should be read from the “feature.csv” file under the “output” directory of the
previously run RSMTool experiment.

Defaults to None.

• trim (bool, optional) – Whether to trim the predictions. If True, trim_min and
trim_max must be specified or be available as attributes of the modeler. Defaults to False.

• trim_min (int, optional) – The lowest possible integer score that the machine should
predict. If None, this function will try to extract this value from modeler. If None, no such
attribute exists, and trim=True, a ValueError will be raised. Defaults to None.

• trim_max (int, optional) – The highest possible integer score that the machine should
predict. If None, this function will try to extract this value from modeler. If None, no such
attribute exists, and trim=True, a ValueError will be raised. Defaults to None.
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• trim_tolerance (float, optional) – The single numeric value that will be used to pad
the trimming range specified in trim_min and trim_max. If None, this function will try to
extract this value from modeler. If no such attribute can be found, the value will default to
0.4998. Defaults to None.

• scale (bool, optional) – Whether to scale predictions. If True, all of
train_predictions_mean, train_predictions_sd, h1_mean, and h1_sd must
be specified or be available as attributes of modeler. Defaults to False.

• train_predictions_mean (float, optional) – The mean of the predictions on the
training set used to re-scale the predictions. May be read from the “postprocess-
ing_params.csv” file under the “output” directory of the RSMTool experiment used to train
the model. If None, this function will try to extract this value from modeler. If None, no
such attribute exists, and scale=True, a ValueError will be raised. Defaults to None.

• train_predictions_sd (float, optional) – The standard deviation of the predictions
on the training set used to re-scale the predictions. May be read from the “postprocess-
ing_params.csv” file under the “output” directory of the RSMTool experiment used to train
the model. If None, this function will try to extract this value from modeler. If None and
no such attribute exists, predictions will not be scaled. Defaults to None.

• h1_mean (float, optional) – The mean of the human scores in the training set also used
to re-scale the predictions. May be read from the “postprocessing_params.csv” file under
the “output” directory of the RSMTool experiment used to train the model. If None, this
function will try to extract this value from modeler. If None, no such attribute exists, and
scale=True, a ValueError will be raised. Defaults to None.

• h1_sd (float, optional) – The standard deviation of the human scores in the training
set used to re-scale the predictions. May be read from the “postprocessing_params.csv” file
under the “output” directory of the RSMTool experiment used to train the model. If None,
this function will try to extract this value from modeler. If None, no such attribute exists,
and scale=True, a ValueError will be raised. Defaults to None.

• logger (logging object, optional) – A logging object. If None is passed, get logger
from __name__. Defaults to None.

Returns
A dictionary containing the raw, scaled, trimmed, and rounded predictions for the input fea-
tures. It always contains the “raw” key and may contain the following additional keys depending
on the availability of the various optional arguments: “raw_trim”, “raw_trim_round”, “scale”,
“scale_trim”, and “scale_trim_round”.

Return type
dict[str, float]

Raises

• ValueError – If input_features contains any non-numeric features

• ValueError – If trimming/scaling is turned on but related parameters are either not specified
or cannot be found as attributes in modeler/have a value of None

• ValueError – If trimming/scaling-related parameters are specified but trimming/scaling is
turned off

• ValueError – If feature information is either not specified or cannot be found as an attribute
in modeler/has a value of None

rsmtool.generate_explanation(config_file_or_obj_or_dict, output_dir, overwrite_output=False,
logger=None, wandb_run=None)

Generate a shap.Explanation object.
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This function does all the heavy lifting. It loads the model, creates an explainer, and generates an explanation
object. It then calls generate_report() in order to generate a SHAP report.

Parameters

• config_file_or_obj_or_dict (str or pathlib.Path or dict or
Configuration) – Path to the experiment configuration file either as a string or as a
pathlib.Path object. Users can also pass a Configuration object that is in memory
or a Python dictionary with keys corresponding to fields in the configuration file. Given a
configuration file, any relative paths in the configuration file will be interpreted relative to
the location of the file. Given a Configuration object, relative paths will be interpreted
relative to the configdir attribute, that _must_ be set. Given a dictionary, the reference
path is set to the current directory.

• output_dir (str) – Path to the experiment output directory.

• logger (Optional[logging object]) – A logging object. If None is passed, get logger
from __name__. Defaults to None.

• wandb_run (wandb.Run) – A wandb run object that will be used to log artifacts and tables. If
None is passed, a new wandb run will be initialized if wandb is enabled in the configuration.
Defaults to None.

Raises

• FileNotFoundError – If any file contained in config_file_or_obj_or_dict cannot be
located.

• ValueError – If both sample_range and sample_size are defined in the configuration
file.

From analyzer Module

Classes for analyzing RSMTool predictions, metrics, etc.

author
Jeremy Biggs (jbiggs@ets.org)

author
Anastassia Loukina (aloukina@ets.org)

author
Nitin Madnani (nmadnani@ets.org)

organization
ETS

class rsmtool.analyzer.Analyzer(logger=None)
Bases: object

Class to perform analysis on all metrics, predictions, etc.

Initialize the Analyzer object.

static analyze_excluded_responses(df , features, header, exclude_zero_scores=True,
exclude_listwise=False)

Compute statistics for responses excluded from analyses.

This method computes various statistics for the responses that were excluded from analyses, either in the
training set or in the test set.

Parameters
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• df (pandas DataFrame) – Data frame containing the excluded responses

• features (list of str) – List of column names containing the features to which we
want to restrict the analyses.

• header (str) – String to be used as the table header for the output data frame.

• exclude_zero_scores (bool, optional) – Whether or not the zero-score responses
should be counted in the exclusion statistics. Defaults to True.

• exclude_listwise (bool, optional) – Whether or not the candidates were excluded
based on minimal number of responses. Defaults to False.

Returns
df_full_crosstab – Two-dimensional data frame containing the exclusion statistics.

Return type
pandas DataFrame

static analyze_used_predictions(df_test, subgroups, candidate_column)
Compute various statistics for predictions used in analyses.

Parameters

• df_test (pandas DataFrame) – Data frame containing the test set predictions.

• subgroups (list of str) – List of column names that contain grouping information.

• candidate_column (str) – Column name that contains candidate identification informa-
tion.

Returns
df_analysis – Data frame containing information about the used predictions.

Return type
pandas DataFrame

static analyze_used_responses(df_train, df_test, subgroups, candidate_column)
Compute statistics for responses used in analyses.

This method computes various statistics on the responses that were used in analyses, either in the training
set or in the test set.

Parameters

• df_train (pandas DataFrame) – Data frame containing the response information for
the training set.

• df_test (pandas DataFrame) – Data frame containing the response information for the
test set.

• subgroups (list of str) – List of column names that contain grouping information.

• candidate_column (str) – Column name that contains candidate identification informa-
tion.

Returns
df_analysis – Data frame containing information about the used responses.

Return type
pandas DataFrame
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static check_frame_names(data_container, dataframe_names)
Check that all specified dataframes are available.

This method checks to make sure all specified DataFrames are in the given data container object.

Parameters

• data_container (container.DataContainer) – A DataContainer object

• dataframe_names (list of str) – The names of the DataFrames expected in the Dat-
aContainer object.

Raises
KeyError – If a given dataframe_name is not in the DataContainer object.

static check_param_names(configuration_obj, parameter_names)
Check that all specified parameters are available.

This method checks to make sure all specified parameters are in the given configuration object.

Parameters

• configuration_obj (configuration_parser.Configuration) – A configuration
object

• parameter_names (list of str) – The names of the parameters (keys) expected in the
Configuration object.

Raises
KeyError – If a given parameter_name is not in the Configuration object.

static compute_basic_descriptives(df , selected_features)
Compute basic descriptive statistics for columns in the given data frame.

Parameters

• df (pandas DataFrame) – Input data frame containing the feature values.

• selected_features (list of str) – List of feature names for which to compute the
descriptives.

Returns
df_desc – DataFrame containing the descriptives for each of the features.

Return type
pandas DataFrame

compute_correlations_by_group(df , selected_features, target_variable, grouping_variable,
include_length=False)

Compute marginal and partial correlations against target variable.

This method computes various marginal and partial correlations of the given columns in the given data
frame against the target variable for all data and for each level of the grouping variable.

Parameters

• df (pandas DataFrame) – Input data frame.

• selected_features (list of str) – List of feature names for which to compute the
correlations.

• target_variable (str) – Feature name indicating the target variable i.e., the dependent
variable

• grouping_variable (str) – Feature name that contain the grouping information
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• include_length (bool, optional) – Whether or not to include the length when com-
puting the partial correlations. Defaults to False.

Returns
df_output – Data frame containing the correlations.

Return type
pandas DataFrame

compute_degradation_and_disattenuated_correlations(df , use_all_responses=True)
Compute the degradation in performance when using system score.

This method computes the degradation in performance when using the system to predict the score instead
of a second human and also the disattenuated correlations between human and system scores. These are
computed as the Pearson’s correlation between the human score and the system score divided by the square
root of correlation between two human raters.

For this, we can compute the system performance either only on the double scored data or on the full dataset.
Both options have their pros and cons. The default is to use the full dataset. This function also assumes
that the sc2 column exists in the given data frame, in addition to sc1 and the various types of predictions.

Parameters

• df (pandas DataFrame) – Input data frame.

• use_all_responses (bool, optional) – Use the full data set instead of only using the
double-scored subset. Defaults to True.

Returns

• df_degradation (pandas DataFrame) – Data frame containing the degradation statistics.

• df_correlations (pandas DataFrame) – Data frame containing the human-system correla-
tions, human-human correlations and disattenuated correlation.

static compute_disattenuated_correlations(human_system_corr, human_human_corr)
Compute disattenuated correlations between human and system scores.

These are computed as the Pearson’s correlation between the human score and the system score divided by
the square root of correlation between two human raters.

Parameters

• human_system_corr (pandas Series) – Series containing of pearson’s correlation co-
efficients human-system correlations.

• human_human_corr (pandas Series) – Series containing of pearson’s correlation coef-
ficients for human-human correlations. This can contain a single value or have the index
matching that of human-system correlations.

Returns
df_correlations – Data frame containing the human-system correlations, human-human cor-
relations, and disattenuated correlations.

Return type
pandas DataFrame

compute_metrics(df , compute_shortened=False, use_scaled_predictions=False,
include_second_score=False, population_sd_dict=None, population_mn_dict=None,
smd_method='unpooled', use_diff_std_means=False)

Compute association metrics for scores in the given data frame.
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This function compute association metrics for all score types. If include_second_score is True, then
it is assumed that a column called sc2 containing a second human score is available and it should be used
to compute the human-human evaluation stats and the performance degradation statistics.

If compute_shortened is True, then this function also computes a shortened version of the full human-
system metrics data frame. See filter_metrics() for the description of the default columns included in
the shortened data frame.

Parameters

• df (pandas DataFrame) – Input data frame

• compute_shortened (bool, optional) – Also compute a shortened version of the full
metrics data frame. Defaults to False.

• use_scaled_predictions (bool, optional) – Use evaluations based on scaled pre-
dictions in the shortened version of the metrics data frame. Defaults to False.

• include_second_score (bool, optional) – Second human score available. Defaults
to False.

• population_sd_dict (dict, optional) – Dictionary containing population standard
deviation for each column containing human or system scores. This is used to compute
SMD for subgroups. Defaults to None.

• population_mn_dict (dict, optional) – Dictionary containing population mean for
each column containing human or system scores. This is used to compute SMD for sub-
groups. Defaults to None.

• smd_method ({"williamson", "johnson", pooled", "unpooled"}, optional)
– The SMD method to use, only used if use_diff_std_means is False. All methods
have the same numerator mean(y_pred) - mean(y_true_observed) and the following de-
nominators:

– ”williamson”: pooled population standard deviation of human and system scores com-
puted based on values in population_sd_dict.

– ”johnson”: population standard deviation of human scores computed based on values in
population_sd_dict.

– ”pooled”: pooled standard deviation of y_true_observed and y_pred for this group.

– ”unpooled”: standard deviation of y_true_observed for this group.

Defaults to “unpooled”.

• use_diff_std_means (bool, optional) – Whether to use the difference of standard-
ized means, rather than the standardized mean difference. This is most useful with sub-
group analysis. Defaults to False.

Returns

• df_human_system_eval (pandas DataFrame) – Data frame containing the full set of eval-
uation metrics.

• df_human_system_eval_filtered (pandas DataFrame) – Data frame containing the
human-human statistics but is empty if include_second_score is False.

• df_human_human_eval (pandas DataFrame) – A shortened version of the first data frame
but is empty if compute_shortened is False.

compute_metrics_by_group(df_test, grouping_variable, use_scaled_predictions=False,
include_second_score=False)
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Compute a subset of evaluation metrics by subgroups.

This method computes a subset of evalution metrics for the scores in the given data frame by group specified
in grouping_variable. See filter_metrics() above for a description of the subset that is selected.

Parameters

• df_test (pandas DataFrame) – Input data frame.

• grouping_variable (str) – Feature name indicating the column that contains grouping
information.

• use_scaled_predictions (bool, optional) – Include scaled predictions when com-
puting the evaluation metrics. Defaults to False.

• include_second_score (bool, optional) – Include human-human association statis-
tics. Defaults to False.

Returns

• df_human_system_by_group (pandas DataFrame) – Data frame containing the correla-
tion human-system association statistics.

• df_human_human_by_group (pandas DataFrame) – Data frame that either con-
tains the human-human statistics or is an empty data frame, depending on whether
include_second_score is True`.

static compute_outliers(df , selected_features)
Compute number and percentage of outliers for given columns.

This method computes the number and percentage of outliers that lie outside the range mean +/- 4 SD for
each of the given columns in the given data frame.

Parameters

• df (pandas DataFrame) – Input data frame containing the feature values.

• selected_features (list of str) – List of feature names for which to compute out-
lier information.

Returns
df_output – Data frame containing outlier information for each of the features.

Return type
pandas DataFrame

static compute_pca(df , selected_features)
Compute PCA decomposition of the given features.

This method computes the PCA decomposition of features in the data frame, restricted to the given columns.
The number of components is set to be min(n_features, n_samples).

Parameters

• df (pandas DataFrame) – Input data frame containing feature values.

• selected_features (list of str) – List of feature names to be used in the PCA de-
composition.

Returns

• df_components (pandas DataFrame) – Data frame containing the PCA components.

• df_variance (pandas DataFrame) – Data frame containing the variance information.

1.10. API Documentation 109



Rater Scoring Modeling Tool, Release 11.3.0

static compute_percentiles(df , selected_features, percentiles=None)
Compute percentiles and outliers for columns in the given data frame.

Parameters

• df (pandas DataFrame) – Input data frame containing the feature values.

• selected_features (list of str) – List of feature names for which to compute the
percentile descriptives.

• percentiles (list of ints, optional) – The percentiles to calculate. If None, use
the percentiles {1, 5, 25, 50, 75, 95, 99}. Defaults to None.

Returns
df_output – Data frame containing the percentile information for each of the features.

Return type
pandas DataFrame

static correlation_helper(df , target_variable, grouping_variable, include_length=False)
Compute marginal and partial correlations for all columns.

This helper method computes marginal and partial correlations of all the columns in the given data frame
against the target variable separately for each level in the the grouping variable. If include_length is
True, it additionally computes partial correlations of each column in the data frame against the target
variable after controlling for the “length” column.

Parameters

• df (pandas DataFrame) – Input data frame containing numeric feature values, the nu-
meric target variable and the grouping variable.

• target_variable (str) – The name of the column used as a reference for computing
correlations.

• grouping_variable (str) – The name of the column defining groups in the data

• include_length (bool, optional) – If True compute additional partial correlations of
each column in the data frame against target variable only partialling out “length” column.

Returns

• df_target_cors (pandas DataFrame) – Data frame containing Pearson’s correlation coef-
ficients for marginal correlations between features and target_variable.

• df_target_partcors (pandas DataFrame) – Data frame containing Pearson’s correlation
coefficients for partial correlations between each feature and target_variable after control-
ling for all other features. If include_length is set to True, the “length” column will not
be included in the partial correlation computation.

• df_target_partcors_no_length (pandas DataFrame) – If include_length is set to
True: Data frame containing Pearson’s correlation coefficients for partial correlations be-
tween each feature and target_variable after controlling for “length”. Otherwise, it
will be an empty data frame.

filter_metrics(df_metrics, use_scaled_predictions=False, chosen_metric_dict=None)
Filter data frame to retain only the given metrics.

This method filters the data frame df_metrics – containing all of the metric values by all score types (raw,
raw_trim etc.) – to retain only the metrics as defined in the given dictionary chosen_metric_dict. This
dictionary maps score types (“raw”, “scale”, “raw_trim” etc.) to metric names. The available metric names
are:
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• “corr”

• “kappa”

• “wtkappa”

• “exact_agr”

• “adj_agr”

• “SMD” or “DSM”, depending on what is in df_metrics.

• “RMSE”

• “R2”

• “sys_min”

• “sys_max”

• “sys_mean”

• “sys_sd”

• “h_min”

• “h_max”

• “h_mean”

• “h_sd”

• “N”

Parameters

• df_metrics (pd.DataFrame) – The DataFrame to filter.

• use_scaled_predictions (bool, optional) – Whether to use scaled predictions.
Defaults to False.

• chosen_metric_dict (dict, optional) – The dictionary to map score types to metrics
that should be computer for them. Defaults to None.

Note: The last five metrics will be the same for all score types. If chosen_metric_dict is not specified
then, the following default dictionary, containing the recommended metrics, is used:

{"X_trim": ["N", "h_mean", "h_sd", "sys_mean", "sys_sd", "wtkappa",
"corr", "RMSE", "R2", "SMD"],

"X_trim_round": ["sys_mean", "sys_sd", "kappa",
"exact_agr", "adj_agr", "SMD"]}

where X = “raw” or “scale” depending on whether use_scaled_predictions is False or True, respec-
tively.

static metrics_helper(human_scores, system_scores, population_human_score_sd=None,
population_system_score_sd=None, population_human_score_mn=None,
population_system_score_mn=None, smd_method='unpooled',
use_diff_std_means=False)

Compute basic association metrics between system and human scores.

Parameters
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• human_scores (pandas Series) – Series containing numeric human (reference) scores.

• system_scores (pandas Series) – Series containing numeric scores predicted by the
model.

• population_human_score_sd (float, optional) – Reference standard deviation for
human scores. This must be specified when the function is used to compute association
metrics for a subset of responses, for example, responses from a particular demographic
subgroup. If smd_method is set to “williamson” or “johnson”, this should be the standard
deviation for the whole population (in most cases, the standard deviation for the whole test
set). If use_diff_std_means is True, this must be the standard deviation for the whole
population and population_human_score_mn must also be specified. Otherwise, it is
ignored. Defaults to None.

• population_system_score_sd (float, optional) – Reference standard deviation
for system scores. This must be specified when the function is used to compute association
metrics for a subset of responses, for example, responses from a particular demographic
subgroup. If smd_method is set to “williamson”, this should be the standard deviation
for the whole population (in most cases, the standard deviation for the whole test set). If
use_diff_std_means is True, this must be the standard deviation for the whole popula-
tion and population_system_score_mnmust also be specified. Otherwise, it is ignored.
Defaults to None.

• population_human_score_mn (float, optional) – Reference mean for human
scores. This must be specified when the function is used to compute association metrics
for a subset of responses, for example, responses from a particular demographic subgroup.
If use_diff_std_means is True, this must be the mean for the whole population (in
most cases, the full test set) and population_human_score_sd must also be specified.
Otherwise, it is ignored. Defaults to None.

• population_system_score_mn (float, optional) – Reference mean for system
scores. This must be specified when the function is used to compute association metrics
for a subset of responses, for example, responses from a particular demographic subgroup.
If use_diff_std_means is True, this must be the mean for the whole population (in
most cases, the full test set) and population_system_score_sd must also be specified.
Otherwise, it is ignored. Defaults to None.

• smd_method ({"williamson", "johnson", "pooled", "unpooled"},
optional) – The SMD method to use, only used if use_diff_std_means is False.
All methods have the same numerator mean(y_pred) - mean(y_true_observed) and the
following denominators :

– ”williamson”: pooled population standard deviation of y_true_observed
and y_pred computed using population_human_score_sd and
population_system_score_sd.

– ”johnson”: population_human_score_sd.

– ”pooled”: pooled standard deviation of y_true_observed and y_pred for this group.

– ”unpooled”: standard deviation of y_true_observed for this group.

Defaults to “unpooled”.

• use_diff_std_means (bool, optional) – Whether to use the difference of standard-
ized means, rather than the standardized mean difference. This is most useful with sub-
group analysis. Defaults to False.

Returns
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metrics – Series containing different evaluation metrics comparing human and system scores.
The following metrics are included:

• kappa: unweighted Cohen’s kappa

• wtkappa: quadratic weighted kappa

• exact_agr: exact agreement

• adj_agr: adjacent agreement with tolerance set to 1

• One of the following :

– SMD: standardized mean difference, if use_diff_std_means is False.

– DSM: difference of standardized means, if use_diff_std_means is True.

• corr: Pearson’s r

• R2: r squared

• RMSE: root mean square error

• sys_min: min system score

• sys_max: max system score

• sys_mean: mean system score (ddof=1)

• sys_sd: standard deviation of system scores (ddof=1)

• h_min: min human score

• h_max: max human score

• h_mean: mean human score (ddof=1)

• h_sd: standard deviation of human scores (ddof=1)

• N : total number of responses

Return type
pandas Series

run_data_composition_analyses_for_rsmeval(data_container, configuration)
Run all data composition analyses for RSMEval.

Parameters

• data_container (container.DataContainer) – The DataContainer object. This con-
tainer must include the following DataFrames: {“test_metadata”, “test_excluded”}.

• configuration (configuration_parser.Configuration) – The Configuration ob-
ject. This configuration object must include the following parameters (keys): {“sub-
groups”, “candidate_column”, “exclude_zero_scores”, “exclude_listwise”}.

Returns

• data_container (container.DataContainer) – A new DataContainer object with the fol-
lowing DataFrames:

– test_excluded_composition

– data_composition

– data_composition_by_*

• configuration (configuration_parser.Configuration) – A new Configuration object.
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run_data_composition_analyses_for_rsmtool(data_container, configuration)
Run all data composition analyses for RSMTool.

Parameters

• data_container (container.DataContainer) – The DataContainer ob-
ject. This container must include the following DataFrames: {“test_metadata”,
“train_metadata”,”train_excluded”, “test_excluded”, “train_features”}.

• configuration (configuration_parser.Configuration) – The Configuration ob-
ject. This configuration object must include the following parameters (keys): {“sub-
groups”, “candidate_column”, “exclude_zero_scores”, “exclude_listwise”}.

Returns

• data_container (container.DataContainer) – A new DataContainer object with the fol-
lowing DataFrames:

– test_excluded_composition

– train_excluded_composition

– data_composition

– data_composition_by_*

• configuration (configuration_parser.Configuration) – A new Configuration object.

run_prediction_analyses(data_container, configuration, wandb_run=None)
Run all analyses on the system scores (predictions).

Parameters

• data_container (container.DataContainer) – The DataContainer object. This
container must include the following DataFrames: {“train_features”, “train_metadata”,
“train_preprocessed_features”, “train_length”, “train_features”}.

• configuration (configuration_parser.Configuration) – The Configuration ob-
ject. This configuration object must include the following parameters (keys): {“sub-
groups”, “second_human_score_column”, “use_scaled_predictions”}.

• wandb_run (wandb.Run) – The wandb run object if wandb is enabled, None otherwise. If
enabled, all the output data frames will be logged to this run as tables. Defaults to None.

Returns

• data_container (container.DataContainer) – A new DataContainer object with the fol-
lowing DataFrames:

– eval

– eval_short

– consistency

– degradation

– disattenudated_correlations

– confMatrix

– confMatrix_h1h2

– score_dist

– eval_by_*
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– consistency_by_*

– disattenduated_correlations_by_*

– true_score_eval

• configuration (configuration_parser.Configuration) – A new Configuration object.

run_training_analyses(data_container, configuration)
Run all analyses on the training data.

Parameters

• data_container (container.DataContainer) – The DataContainer object. This
container must include the following DataFrames: {“train_features”, “train_metadata”,
“train_preprocessed_features”, “train_length”, “train_features”}.

• configuration (configuration_parser.Configuration) – The Configuration ob-
ject. This configuration object must include the following parameters (keys):
{“length_column”, “subgroups”, “selected_features”}.

Returns

• data_container (container.DataContainer) – A new DataContainer object with the fol-
lowing DataFrames:

– feature_descriptives

– feature_descriptivesExtra

– feature_outliers

– cors_orig

– cors_processed

– margcor_score_all_data

– pcor_score_all_data

– pcor_score_no_length_all_data

– margcor_length_all_data

– pcor_length_all_data

– pca

– pcavar

– margcor_length_by_*

– pcor_length_by_*

– margcor_score_by_*

– pcor_score_by_*

– pcor_score_no_length_by_*

• configuration (configuration_parser.Configuration) – A new Configuration object.
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From comparer Module

Classes for comparing outputs of two RSMTool experiments.

author
Jeremy Biggs (jbiggs@ets.org)

author
Anastassia Loukina (aloukina@ets.org)

author
Nitin Madnani (nmadnani@ets.org)

organization
ETS

class rsmtool.comparer.Comparer

Bases: object

Class to perform comparisons between two RSMTool experiments.

static compute_correlations_between_versions(df_old, df_new, human_score='sc1',
id_column='spkitemid')

Compute correlations between old and new feature values.

This method computes correlations between old and new feature values in the two given frames as well as
the correlations between each feature value and the human score.

Parameters

• df_old (pandas DataFrame) – Data frame with feature values for the ‘old’ model.

• df_new (pandas DataFrame) – Data frame with feature values for the ‘new’ model.

• human_score (str, optional) – Name of the column containing human score. Defaults
to “sc1”. Must be the same for both data sets.

• id_column (str, optional) – Name of the column containing id for each response.
Defaults to “spkitemid”. Must be the same for both data sets.

Returns

df_correlations –

Data frame with a row for each feature and the following columns:

• ”N”: total number of responses

• ”human_old”: correlation with human score in the old frame

• ”human_new”: correlation with human score in the new frame

• ”old_new”: correlation between old and new frames

Return type
pandas DataFrame

Raises

• ValueError – If there are no shared features between the two sets.

• ValueError – If there are no shared responses between the two sets.
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load_rsmtool_output(filedir, figdir, experiment_id, prefix, groups_eval)
Load all of the outputs of an rsmtool experiment.

For each type of output, we first check whether the file exists to allow comparing experiments with different
sets of outputs.

Parameters

• filedir (str) – Path to the directory containing output files.

• figdir (str) – Path to the directory containing output figures.

• experiment_id (str) – Original experiment_id used to generate the output files.

• prefix (str) – Must be set to scale or raw. Indicates whether the score is scaled or not.

• groups_eval (list) – List of subgroup names used for subgroup evaluation.

Returns

• files (dict) – A dictionary with outputs converted to pandas data frames. If a particular type
of output did not exist for the experiment, its value will be an empty data frame.

• figs (dict) – A dictionary with experiment figures.

static make_summary_stat_df(df )
Compute summary statistics for the data in the given frame.

Parameters
df (pandas DataFrame) – Data frame containing numeric data.

Returns
res – Data frame containing summary statistics for data in the input frame.

Return type
pandas DataFrame

static process_confusion_matrix(conf_matrix)
Add “human” and “machine” to column names in the confusion matrix.

Parameters
conf_matrix (pandas DataFrame) – data frame containing the confusion matrix.

Returns
conf_matrix_renamed – pandas Data Frame containing the confusion matrix with the
columns renamed.

Return type
pandas DataFrame

From configuration_parser Module

Configuration parser.

Classes related to parsing configuration files and creating configuration objects.

author
Jeremy Biggs (jbiggs@ets.org)

author
Anastassia Loukina (aloukina@ets.org)

author
Nitin Madnani (nmadnani@ets.org)
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organization
ETS

class rsmtool.configuration_parser.Configuration(configdict, *, configdir=None, context='rsmtool',
logger=None)

Bases: object

Configuration class.

Encapsulates all of the configuration parameters and methods to access these parameters.

Create an object of the Configuration class.

This method can be used to directly instantiate a Configuration object.

Parameters

• configdict (dict) – A dictionary of configuration parameters. The dictionary must be a
valid configuration dictionary with default values filled as necessary.

• configdir (str, optional, keyword-only) – The reference path used to resolve any
relative paths in the configuration object. When None, will be set during initialization to the
current working directory. Defaults to None,

• context (str) – The context of the tool. One of {“rsmtool”, “rsmeval”, “rsmcompare”,
“rsmpredict”, “rsmsummarize”}. Defaults to “rsmtool”.

• logger (logging object, optional) – A logging object. If None is passed, get logger
from __name__. Defaults to None.

check_exclude_listwise()

Check for candidate exclusion.

Check if we are excluding candidates based on number of responses, and add this to the configuration file.

Returns
exclude_listwise – Whether to exclude list-wise.

Return type
bool

check_flag_column(flag_column='flag_column', partition='unknown')
Make sure the column name in flag_column is correctly specified.

Get flag columns and values for filtering, if any, and convert single values to lists. Raises an exception if
the column name in flag_column is not correctly specified in the configuration file.

Parameters

• flag_column (str) – The flag column name to check. Currently used names are
“flag_column” or “flag_column_test”. Defaults to “flag_column”.

• partition (str) – The data partition which is filtered based on the flag column name.
One of {“train”, “test”, “both”, “unknown”}. Defaults to “both”.

Returns
new_filtering_dict – Properly formatted dictionary for the column name in flag_column.

Return type
dict

Raises

• ValueError – If the specified value of the column name in flag_column is not a dictio-
nary.
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• ValueError – If the value of partition is not in the expected list.

• ValueError – If the value of partition does not match the flag_column.

property configdir

Get the path to configuration directory.

Get the path to the configuration reference directory that will be used to resolve any relative paths in the
configuration.

Returns
configdir – The path to the configuration reference directory.

Return type
str

property context

Get the context.

copy(deep=True)
Return a copy of the object.

Parameters
deep (bool, optional) – Whether to perform a deep copy. Defaults to True.

Returns
copy – A new configuration object.

Return type
Configuration

get(key, default=None)
Get value or default for the given key.

Parameters

• key (str) – Key to check in the Configuration object.

• default – The default value to return, if no key exists. Defaults to None.

• optional – The default value to return, if no key exists. Defaults to None.

Returns
The value in the configuration object dictionary.

Return type
value

get_default_converter()

Get default converter dictionary for data reader.

Returns
default_converter – The default converter for a train or test file.

Return type
dict

get_names_and_paths(keys, names)
Get a list of values for the given keys.

Remove any values that are None.

Parameters

• keys (list) – A list of keys whose values to retrieve.
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• names (list) – The default value to use if key cannot be found. Defaults to None.

Returns
values – The list of values.

Return type
list

Raises
ValueError – If there are any duplicate keys or names.

get_rater_error_variance()

Get specified rater error variance, if any, and make sure it’s numeric.

Returns
rater_error_variance – Specified rater error variance.

Return type
float

get_trim_min_max_tolerance()

Get trim min, trim max, and tolerance values.

Get the specified trim min and max, and trim_tolerance if any, and make sure they are numeric.

Returns

• spec_trim_min (float) – Specified trim min value.

• spec_trim_max (float) – Specified trim max value.

• spec_trim_tolerance (float) – Specified trim tolerance value.

items()

Return configuration items as a list of tuples.

Returns
items – A list of (key, value) tuples in the configuration object.

Return type
list of tuples

keys()

Return keys as a list.

Returns
keys – A list of keys in the configuration object.

Return type
list of str

pop(key, default=None)
Remove and return an element from the object having the given key.

Parameters

• key (str) – Key to pop in the configuration object.

• default – The default value to return, if no key exists. Defaults to None.

• optional – The default value to return, if no key exists. Defaults to None.

Returns
The value removed from the object.
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Return type
value

save(output_dir=None)
Save the configuration file to the output directory specified.

Parameters
output_dir (str) – The path to the output directory. If None, the current directory is used.
Defaults to None.

to_dict()

Get a dictionary representation of the configuration object.

Returns
config – The configuration dictionary.

Return type
dict

values()

Return configuration values as a list.

Returns
values – A list of values in the configuration object.

Return type
list

class rsmtool.configuration_parser.ConfigurationParser(pathlike, logger=None)
Bases: object

ConfigurationParser class to create Configuration objects.

Instantiate a ConfigurationParser for a given config file path.

Parameters

• pathlike (str or pathlib.Path ) – A string containing the path to the configuration file
that is to be parsed. A pathlib.Path instance is also acceptable.

• logger (logging.Logger object, optional) – Custom logger object to use, if not
None. Otherwise a new logger is created. Defaults to None.

Raises

• FileNotFoundError – If the given path does not exist.

• OSError – If the given path is a directory, not a file.

• ValueError – If the file at the given path does not have a valid extension (“.json”).

logger = None

parse(context='rsmtool')
Parse configuration file.

Parse the configuration file for which this parser was instantiated.

Parameters
context (str, optional) – Context of the tool in which we are validating. One of: {“rsm-
tool”, “rsmeval”, “rsmpredict”, “rsmcompare”, “rsmsummarize”, “rsmxval”}. Defaults to
“rsmtool”.
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Returns
configuration – A configuration object containing the parameters in the file that we instanti-
ated the parser for.

Return type
Configuration

classmethod process_config(config)
Process configuration file.

Converts fields which are read in as string to the appropriate format. Fields which can take multiple string
values are converted to lists if they have not been already formatted as such.

Parameters
inplace (bool) – Maintain the state of the config object produced by this method. Defaults
to True.

Returns
config_obj – A configuration object

Return type
Configuration

Raises

• NameError – If config does not exist, or config could not be read.

• ValueError – If boolean configuration fields contain a value other then “true” or “false”
(in JSON).

classmethod validate_config(config, context='rsmtool')
Validate configuration file.

Ensure that all required fields are specified, add default values values for all unspecified fields, and ensure
that all specified fields are valid.

Parameters

• context (str, optional) – Context of the tool in which we are validating. One of
{“rsmtool”, “rsmeval”, “rsmpredict”, “rsmcompare”, “rsmsummarize”}. Defaults to “rsm-
tool”.

• inplace (bool) – Maintain the state of the config object produced by this method. De-
faults to True.

Returns
config_obj – A configuration object

Return type
Configuration

Raises
ValueError – If config does not exist, and no config passed.

rsmtool.configuration_parser.configure(context, config_file_or_obj_or_dict)
Create a Configuration object.

Get the configuration for context from the input config_file_or_obj_or_dict.

Parameters

• context (str) – The context that is being configured. Must be one of “rsmtool”, “rsmeval”,
“rsmcompare”, “rsmsummarize”, “rsmpredict”, or “rsmxval”.
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• config_file_or_obj_or_dict (str or pathlib.Path or dict or
Configuration) – Path to the experiment configuration file either a a string or as a
pathlib.Path object. Users can also pass a Configuration object that is in memory
or a Python dictionary with keys corresponding to fields in the configuration file. Given a
configuration file, any relative paths in the configuration file will be interpreted relative to
the location of the file. Given a Configuration object, relative paths will be interpreted
relative to the configdir attribute, that _must_ be set. Given a dictionary, the reference
path is set to the current directory.

Returns
configuration – The Configuration object for the tool.

Return type
Configuration

Raises

• AttributeError – If the configdir attribute for the Configuration input is not set.

• ValueError – If config_file_or_obj_or_dict contains anything except a string, a
path, a dictionary, or a Configuration object.

From container Module

Class to encapsulate data contained in multiple pandas DataFrames.

It represents each of the multiple data sources as a “dataset”. Each dataset is represented by three properties: - “name”
: the name of the data set - “frame” : the pandas DataFrame that contains the actual data - “path” : the path to the file
on disk from which the data was read

author
Jeremy Biggs (jbiggs@ets.org)

author
Anastassia Loukina (aloukina@ets.org)

author
Nitin Madnani (nmadnani@ets.org)

organization
ETS

class rsmtool.container.DataContainer(datasets=None)
Bases: object

Class to encapsulate datasets.

Initialize a DataContainer object.

Parameters
datasets (list of dicts, optional) – A list of dataset dictionaries. Each dict should have
the following keys: “name” containing the name of the dataset, “frame” containing the dataframe
object representing the dataset, and “path” containing the path to the file from which the frame
was read.

add_dataset(dataset_dict, update=False)
Add a new dataset (or update an existing one).

Parameters
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• dataset_dict (dict) – The dataset dictionary to add or update with the “name”, “frame”,
and “path” keys.

• update (bool, optional) – Update an existing DataFrame, if True. Defaults to False.

copy(deep=True)
Return a copy of the container object.

Parameters
deep (bool, optional) – If True, create a deep copy of the underlying data frames. De-
faults to True.

drop(name)
Drop a given dataset from the container and return instance.

Parameters
name (str) – The name of the dataset to drop.

Return type
self

get_frame(name, default=None)
Get the data frame given the dataset name.

Parameters

• name (str) – The name for the dataset.

• default (pandas DataFrame, optional) – The default value to return if the named
dataset does not exist. Defaults to None.

Returns
frame – The data frame for the named dataset.

Return type
pandas DataFrame

get_frames(prefix=None, suffix=None)
Get all data frames with a given prefix or suffix in their name.

Note that the selection by prefix or suffix is case-insensitive.

Parameters

• prefix (str, optional) – Only return frames with the given prefix. If None, then do
not exclude any frames based on their prefix. Defaults to None.

• suffix (str, optional) – Only return frames with the given suffix. If None, then do
not exclude any frames based on their suffix. Defaults to None.

Returns
frames – A dictionary with the data frames that contain the specified prefix and/or suffix in
their corresponding names. The names are the keys and the frames are the values.

Return type
dict

get_path(name, default=None)
Get the path for the dataset given the name.

Parameters

• name (str) – The name for the dataset.
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• default (str, optional) – The default path to return if the named dataset does not
exist. Defaults to None.

Returns
path – The path for the named dataset.

Return type
str

items()

Return the container items as a list of (name, frame) tuples.

Returns
items – A list of (name, frame) tuples in the container object.

Return type
list of tuples

keys()

Return the container keys (dataset names) as a list.

Returns
keys – A list of keys (names) in the container object.

Return type
list

rename(name, new_name)
Rename a given dataset in the container and return instance.

Parameters

• name (str) – The name of the current dataset in the container object.

• new_name (str) – The new name for the dataset in the container object.

Return type
self

static to_datasets(data_container)
Convert container object to a list of dataset dictionaries.

Each dictionary will contain the “name”, “frame”, and “path” keys.

Parameters
data_container (DataContainer) – The container object to convert.

Returns
datasets_dict – A list of dataset dictionaries.

Return type
list of dicts

values()

Return all data frames as a list.

Returns
values – A list of all data frames in the container object.

Return type
list
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From convert_feature_json Module

rsmtool.convert_feature_json.convert_feature_json_file(json_file, output_file, delete=False)
Convert given feature JSON file into tabular format.

The specific format is inferred by the extension of the output file.

Parameters

• json_file (str) – Path to feature JSON file to be converted.

• output_file (str) – Path to CSV/TSV/XLSX output file.

• delete (bool, optional) – Whether to delete the original file after conversion. Defaults
to False.

Raises

• RuntimeError – If the given input file is not a valid feature JSON file.

• RuntimeError – If the output file has an unsupported extension.

From fairness_utils Module

rsmtool.fairness_utils.get_fairness_analyses(df , group, system_score_column,
human_score_column='sc1', base_group=None)

Compute analyses from Loukina et al. 2019.

The function computes how much variance group membership explains in overall score accuracy (osa), overall
score difference (osd), and conditional score difference (csd). See the paper for more details.

Parameters

• df (pandas DataFrame) – A dataframe containing columns with numeric human scores,
columns with numeric system scores and a column with group membership.

• group (str) – Name of the column containing group membership.

• system_score_column (str) – Name of the column containing system scores.

• human_score_column (str) – Name of the column containing human scores.

• base_group (str, optional) – Name of the group to use as the reference category. De-
faults to None in which case the group with the largest number of cases will be used as the
reference category. Ties are broken alphabetically.

Returns

• model_dict (dictionary) – A dictionary with different proposed metrics as keys and fitted
models as values.

• fairness_container (DataContainer) –

A datacontainer with the following datasets:

– ”estimates_<METRIC>_by_<GROUP>” where “<GROUP>” corresponds to the given
group and “<METRIC>” can be “osa”, “osd” and “csd” estimates for each group computed
by the respective models.

– ”fairness_metrics_by_<GROUP>” - a summary of model fits (R2 and p values).
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From modeler Module

Class for training and predicting with built-in or SKLL models.

author
Jeremy Biggs (jbiggs@ets.org)

author
Anastassia Loukina (aloukina@ets.org)

author
Nitin Madnani (nmadnani@ets.org)

organization
ETS

class rsmtool.modeler.Modeler(logger=None)
Bases: object

Class to train model and generate predictions with built-in or SKLL models.

Initialize empty Modeler object.

The learner and the scaling-/trimming-related attributes are set to None.

create_fake_skll_learner(df_coefficients)
Create a fake SKLL linear regression learner from given coefficients.

Parameters
df_coefficients (pandas DataFrame) – The data frame containing the linear coefficients
we want to create the fake SKLL model with.

Returns
learner – SKLL Learner object representing a LinearRegression model with the specified
coefficients.

Return type
skll.learner.Learner

get_coefficients()

Get the coefficients of the model, if available.

Returns
coefficients – The coefficients of the model, if available.

Return type
np.array or None

get_feature_names()

Get the feature names, if available.

Returns
feature_names – A list of feature names, or None if no learner was trained.

Return type
list or None

get_intercept()

Get the intercept of the model, if available.

Returns
intercept – The intercept of the model.
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Return type
float or None

classmethod load_from_file(path)
Load a modeler object from a file on disk.

The file must contain either Modeler or a SKLL Learner, in which case a Modeler object will be created
from the Learner.

Parameters
path (str) – File path.

Returns
model – A Modeler instance.

Return type
Modeler

Raises
ValueError – If path does not end with “.model”.

classmethod load_from_learner(learner)
Create a new Modeler instance with a pre-populated learner.

Parameters
learner (skll.learner.Learner) – A SKLL Learner object.

Returns
modeler – A Modeler object.

Return type
Modeler

Raises
TypeError – If learner is not a SKLL Learner instance.

static model_fit_to_dataframe(fit)
Extract fit metrics from a statsmodels fit object into a data frame.

Parameters
fit (statsmodels.RegressionResults) – Model fit object obtained from a linear model
trained using statsmodels.OLS.

Returns
df_fit – The output data frame with the main model fit metrics.

Return type
pandas DataFrame

static ols_coefficients_to_dataframe(coefs)
Convert series containing OLS coefficients to a data frame.

Parameters
coefs (pandas Series) – Series with feature names in the index and the coefficient values
as the data, obtained from a linear model trained using statsmodels.OLS.

Returns
df_coef – Data frame with two columns: the feature name and the coefficient value.

Return type
pandas DataFrame
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Note: The first row in the output data frame is always for the intercept and the rest are sorted by feature
name.

predict(df , min_score=None, max_score=None, predict_expected=False)
Get raw predictions from given SKLL model on data in given data frame.

Parameters

• df (pandas DataFrame) – Data frame containing features on which to make the pre-
dictions. The data must contain pre-processed feature values, an ID column named “sp-
kitemid”, and a label column named “sc1”.

• min_score (int, optional) – Minimum score level to be used if computing expected
scores. If None, trying to compute expected scores will raise an exception. Defaults to
None.

• max_score (int, optional) – Maximum score level to be used if computing expected
scores. If None, trying to compute expected scores will raise an exception. Defaults to
None.

• predict_expected (bool, optional) – Predict expected scores for classifiers that re-
turn probability distributions over score. This will be ignored with a warning if the specified
model does not support probability distributions. Note also that this assumes that the score
range consists of contiguous integers - starting at min_score and ending at max_score.
Defaults to False.

Returns
df_predictions – Data frame containing the raw predictions, the IDs, and the human scores.

Return type
pandas DataFrame

Raises

• ValueError – If the model cannot predict probability distributions and
predict_expected is set to True.

• ValueError – If the score range specified by min_score and max_score does not match
what the model predicts in its probability distribution.

• ValueError – If predict_expected is True but min_score and max_score are not
specified.

predict_train_and_test(df_train, df_test, configuration)
Generate raw, scaled, and trimmed predictions on given data.

Parameters

• df_train (pandas DataFrame) – Data frame containing the pre-processed training set
features.

• df_test (pandas DataFrame) – Data frame containing the pre-processed test set fea-
tures.

• configuration (configuration_parser.Configuration) – A configuration object
containing “trim_max” and “trim_min” keys.

Returns

• List of data frames containing predictions and other
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• information.

save(model_path)
Save an instance of this class to disk.

Parameters
model_path (str) – Destination path for model file

scale_coefficients(configuration)
Scale coefficients using human scores & training set predictions.

This procedure approximates what is done in operational setting but does not apply trimming to predictions.

Parameters
configuration (configuration_parser.Configuration) – A configuration object
containing the “train_predictions_mean”, “train_predictions_sd”, and “human_labels_sd”
parameters.

Returns
data_container – A container object containing the “coefficients_scaled” dataset. The frame
for this dataset contains the scaled coefficients and the feature names, along with the intercept.

Return type
container.DataContainer

Raises
RuntimeError – If the model is non-linear and no coefficients are available.

static skll_learner_params_to_dataframe(learner)
Extract parameters from the given SKLL learner into a data frame.

Parameters
learner (skll.learner.Learner) – A SKLL learner object.

Returns
df_coef – The data frame containing the model parameters from the given SKLL learner
object.

Return type
pandas DataFrame

Note:

1. We use the coef_ attribute of the scikit-learn model underlying the SKLL learner instead of the latter’s
model_params attribute. This is because model_params ignores zero coefficients, which we do not
want.

2. The first row in the output data frame is always for the intercept and the rest are sorted by feature name.

train(configuration, data_container, filedir, figdir, file_format='csv')
Train the given model on the given data and save the results.

The main driver function to train the given model on the given data and save the results in the given direc-
tories using the given experiment ID as the prefix.

Parameters

• configuration (configuration_parser.Configuration) – A configuration object
containing “experiment_id” and “model_name” parameters.
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• data_container (container.DataContainer) – A data container object containing
“train_preprocessed_features” data set.

• filedir (str) – Path to the “output” experiment output directory.

• figdir (str) – Path to the “figure” experiment output directory.

• file_format (str, optional) – The format in which to save files. One of {“csv”, “tsv”,
“xlsx”}. Defaults to “csv”.

Returns
name

Return type
SKLL Learner object

train_builtin_model(model_name, df_train, experiment_id, filedir, file_format='csv')
Train one of the built-in linear regression models.

Parameters

• model_name (str) – Name of the built-in model to train.

• df_train (pandas DataFrame) – Data frame containing the features on which to train
the model. The data frame must contain the ID column named “spkitemid” and the numeric
label column named “sc1”.

• experiment_id (str) – The experiment ID.

• filedir (str) – Path to the output experiment output directory.

• file_format (str, optional) – The format in which to save files. One of {“csv”, “tsv”,
“xlsx”}. Defaults to “csv”.

Returns
learner – SKLL LinearRegression Learner object containing the coefficients learned by
training the built-in model.

Return type
skll.learner.Learner

train_equal_weights_lr(df_train, feature_columns)
Train an “EqualWeightsLR” model.

This model assigns the same weight to all features.

Parameters

• df_train (pandas DataFrame) – Data frame containing the features on which to train
the model.

• feature_columns (list of str) – A list of feature columns to use in training the
model.

Returns

• learner (skll.learner.Learner) – The SKLL learner object.

• fit (statsmodels.RegressionResults) – A statsmodels regression results object.

• df_coef (pandas DataFrame) – Data frame containing the model coefficients.

• used_features (list of str) – A list of features used in the final model.
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train_lasso_fixed_lambda(df_train, feature_columns)
Train a “LassoFixedLambda” model.

This is a Lasso model with a fixed lambda.

Parameters

• df_train (pandas DataFrame) – Data frame containing the features on which to train
the model.

• feature_columns (list of str) – A list of feature columns to use in training the
model.

Returns

• learner (skll.learner.Learner) – The SKLL learner object

• fit (None) – This is always None since there is no OLS model fitted in this case.

• df_coef (pandas DataFrame) – Data frame containing the model coefficients.

• used_features (list of str) – A list of features used in the final model.

train_lasso_fixed_lambda_then_lr(df_train, feature_columns)
Train a “LassoFixedLambdaThenLR” model.

First do feature selection using lasso regression with a fixed lambda and then use only those features to train
a second linear regression

Parameters

• df_train (pandas DataFrame) – Data frame containing the features on which to train
the model.

• feature_columns (list of str) – A list of feature columns to use in training the
model.

Returns

• learner (skll.learner.Learner) – The SKLL learner object

• fit (statsmodels.RegressionResults) – A statsmodels regression results object.

• df_coef (pandas DataFrame) – The model coefficients in a data_frame

• used_features (list of str) – A list of features used in the final model.

train_lasso_fixed_lambda_then_non_negative_lr(df_train, feature_columns)
Train an “LassoFixedLambdaThenNNLR” model.

First do feature selection using lasso regression and positive only weights. Then fit an NNLR (see above)
on those features.

Parameters

• df_train (pandas DataFrame) – Data frame containing the features on which to train
the model.

• feature_columns (list of str) – A list of feature columns to use in training the
model.

Returns

• learner (skll.learner.Learner) – The SKLL learner object.

• fit (statsmodels.RegressionResults) – A statsmodels regression results object.
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• df_coef (pandas DataFrame) – Data frame containing the model coefficients.

• used_features (list of str) – A list of features used in the final model.

train_linear_regression(df_train, feature_columns)
Train a “LinearRegression” model.

This model is a simple linear regression model.

Parameters

• df_train (pandas DataFrame) – Data frame containing the features on which to train
the model.

• feature_columns (list) – A list of feature columns to use in training the model.

Returns

• learner (skll.learner.Learner) – The SKLL learner object.

• fit (statsmodels.RegressionResults) – A statsmodels regression results object.

• df_coef (pandas DataFrame) – Data frame containing the model coefficients.

• used_features (list of str) – A list of features used in the final model.

train_non_negative_lr(df_train, feature_columns)
Train an “NNLR” model.

To do this, we first do feature selection using non-negative least squares (NNLS) and then use only its
non-zero features to train another linear regression (LR) model. We do the regular LR at the end since we
want an LR object so that we have access to R^2 and other useful statistics. There should be no difference
between the non-zero coefficients from NNLS and the coefficients that end up coming out of the subsequent
LR.

Parameters

• df_train (pandas DataFrame) – Data frame containing the features on which to train
the model.

• feature_columns (list of str) – A list of feature columns to use in training the
model.

Returns

• learner (skll.learner.Learner) – The SKLL learner object.

• fit (statsmodels.RegressionResults) – A statsmodels regression results object.

• df_coef (pandas DataFrame) – Data frame containing the model coefficients.

• used_features (list of str) – A list of features used in the final model.

train_non_negative_lr_iterative(df_train, feature_columns)
Train an “NNLR_iterative” model.

For applications where there is a concern that standard NNLS may not converge, an alternate method of
training NNLR by iteratively fitting OLS models, checking the coefficients, and dropping negative coeffi-
cients. First, fit an OLS model. Then, identify any variables whose coefficients are negative. Drop these
variables from the model. Finally, refit the model. If any coefficients are still negative, set these to zero.

Parameters

• df_train (pandas DataFrame) – Data frame containing the features on which to train
the model.
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• feature_columns (list of str) – A list of feature columns to use in training the
model.

Returns

• learner (skll.learner.Learner) – The SKLL learner object.

• fit (statsmodels.RegressionResults) – A statsmodels regression results object.

• df_coef (pandas DataFrame) – Data frame containing the model coefficients.

• used_features (list of str) – A list of features used in the final model.

train_positive_lasso_cv(df_train, feature_columns)
Train a “PositiveLassoCV” model.

Do feature selection using lasso regression optimized for log likelihood using cross validation. All coeffi-
cients are constrained to have positive values.

Parameters

• df_train (pandas DataFrame) – Data frame containing the features on which to train
the model.

• feature_columns (list of str) – A list of feature columns to use in training the
model.

Returns

• learner (skll.learner.Learner) – The SKLL learner object

• fit (None) – This is always None since there is no OLS model fitted in this case.

• df_coef (pandas DataFrame) – Data frame containing the model coefficients.

• used_features (list of str) – A list of features used in the final model.

train_positive_lasso_cv_then_lr(df_train, feature_columns)
Train a “PositiveLassoCVThenLR” model.

First do feature selection using lasso regression optimized for log likelihood using cross validation and then
use only those features to train a second linear regression.

Parameters

• df_train (pandas DataFrame) – Data frame containing the features on which to train
the model.

• feature_columns (list of str) – A list of feature columns to use in training the
model.

Returns

• learner (skll.learner.Learner) – The SKLL learner object.

• fit (statsmodels.RegressionResults) – A statsmodels regression results object.

• df_coef (pandas DataFrame) – Data frame containing the model coefficients.

• used_features (list of str) – A list of features used in the final model.

train_rebalanced_lr(df_train, feature_columns)
Train a “RebalancedLR” model.

This model balances empirical weights by changing betas (adapted from here).

Parameters
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• df_train (pandas DataFrame) – Data frame containing the features on which to train
the model.

• feature_columns (list of str) – A list of feature columns to use in training the
model.

Returns

• learner (skll.learner.Learner) – The SKLL learner object.

• fit (statsmodels.RegressionResults) – A statsmodels regression results object.

• df_coef (pandas DataFrame) – Data frame containing the model coefficients.

• used_features (list of str) – A list of features used in the final model.

train_score_weighted_lr(df_train, feature_columns)
Train a “ScoreWeightedLR” model.

This is a linear regression model weighted by score.

Parameters

• df_train (pandas DataFrame) – Data frame containing the features on which to train
the model.

• feature_columns (list of str) – A list of feature columns to use in training the
model.

Returns

• learner (skll.learner.Learner) – The SKLL learner object

• fit (statsmodels.RegressionResults) – A statsmodels regression results object.

• df_coef (pandas DataFrame) – Data frame containing the model coefficients.

• used_features (list of str) – A list of features used in the final model.

train_skll_model(model_name, df_train, custom_fixed_parameters=None, custom_objective=None,
predict_expected_scores=False, skll_grid_search_jobs=1)

Train a SKLL classification or regression model.

Parameters

• model_name (str) – Name of the SKLL model to train.

• df_train (pandas DataFrame) – Data frame containing the features on which to train
the model.

• custom_fixed_parameters (dict, optional) – A dictionary containing any fixed pa-
rameters for the SKLL model. Defaults to None.

• custom_objective (str, optional) – Name of custom user-specified objective. If not
specified or None, “neg_mean_squared_error” is used as the objective. Defaults to None.

• predict_expected_scores (bool, optional) – Whether we want the trained classi-
fiers to predict expected scores. Defaults to False.

• skll_grid_search_jobs (int) – Number of folds to run in parallel when using skll
grid search. Defaults to 1.

Returns
learner_and_objective – A 2-tuple containing a SKLL Learner object of the appropriate
type and the chosen tuning objective.
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Return type
tuple

From preprocessor Module

Classes for preprocessing input data in various contexts.

author
Jeremy Biggs (jbiggs@ets.org)

author
Anastassia Loukina (aloukina@ets.org)

author
Nitin Madnani (nmadnani@ets.org)

organization
ETS

class rsmtool.preprocessor.FeaturePreprocessor(logger=None)
Bases: object

Class to preprocess features in training and testing sets.

Initialize the FeaturePreprocessor object.

check_model_name(model_name)
Check that the given model name is valid and determine its type.

Parameters
model_name (str) – Name of the model.

Returns
model_type – One of “BUILTIN” or “SKLL”.

Return type
str

Raises
ValueError – If the model is not supported.

check_subgroups(df , subgroups)
Validate subgroup names in the given data.

Check that all subgroups, if specified, correspond to columns in the provided data frame, and replace all
NaNs in subgroups values with ‘No info’ for later convenience.

Raises an exception if any specified subgroup columns are missing.

Parameters

• df (pandas DataFrame) – Input data frame with subgroups to check.

• subgroups (list of str) – List of column names that contain grouping information.

Returns
df – Modified input data frame with NaNs replaced.

Return type
pandas DataFrame

Raises
KeyError – If the data does not contain columns for all specified subgroups.
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filter_data(df , label_column, id_column, length_column, second_human_score_column,
candidate_column, requested_feature_names, reserved_column_names, given_trim_min,
given_trim_max, flag_column_dict, subgroups, exclude_zero_scores=True,
exclude_zero_sd=False, feature_subset_specs=None, feature_subset=None,
min_candidate_items=None, use_fake_labels=False)

Filter rows with zero/non-numeric values for label_column.

Check whether any features that are specifically requested in requested_feature_names are missing
from the data. If no feature names are requested, the feature list is generated based on column names and
subset information, if available. The function then excludes non-numeric values for any feature. It will also
exclude zero scores if exclude_zero_scores is True. If the user requested to exclude candidates with
less than min_candidate_items, such candidates are also excluded.

It also generates fake labels between 1 and 10 if use_fake_parameters is True. Finally, it renames the
ID and label columns and splits the data into: (a) data frame with feature values and scores (b) data frame
with information about subgroup and candidate (metadata) and (c) the data frame with all other columns.

Parameters

• df (pandas DataFrame) – The data frame to filter.

• label_column (str) – The label column in the data.

• id_column (str) – The ID column in the data.

• length_column (str) – The length column in the data.

• second_human_score_column (str) – The second human score column in the data.

• candidate_column (str) – The candidate column in the data.

• requested_feature_names (list) – A list of requested feature names.

• reserved_column_names (list) – A list of reserved column names.

• given_trim_min (float) – The minimum trim value.

• given_trim_max (float) – The maximum trim value.

• flag_column_dict (dict) – A dictionary of flag columns.

• subgroups (list, optional) – A list of subgroups, if any.

• exclude_zero_scores (bool) – Whether to exclude zero scores. Defaults to True.

• exclude_zero_sd (bool, optional) – Whether to exclude zero standard deviation.
Defaults to False.

• feature_subset_specs (pandas DataFrame, optional) – The data frame contain-
ing the feature subset specifications. Defaults to None.

• feature_subset (str, optional) – The feature subset group (e.g. ‘A’). Defaults to
None.

• min_candidate_items (int, optional) – The minimum number of items needed to
include candidate. Defaults to None.

• use_fake_labels (bool, optional) – Whether to use fake labels. Defaults to False.

Returns

• df_filtered_features (pandas DataFrame) – Data frame with filtered features.

• df_filtered_metadata (pandas DataFrame) – Data frame with filtered metadata.
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• df_filtered_other_columns (pandas DataFrame) – Data frame with other columns fil-
tered.

• df_excluded (pandas DataFrame) – Data frame with excluded records.

• df_filtered_length (pandas DataFrame) – Data frame with length column(s) filtered.

• df_filtered_human_scores (pandas DataFrame) – Data frame with human scores filtered.

• df_responses_with_excluded_flags (pandas DataFrame) – Data frame containing re-
sponses with excluded flags.

• trim_min (float) – The maximum trim value.

• trim_max (float) – The minimum trim value.

• feature_names (list) – A list of feature names.

filter_on_column(df , column, id_column, exclude_zeros=False, exclude_zero_sd=False)
Filter out rows containing non-numeric values.

Filter out the rows in the given data frame that contain non-numeric (or zero, if specified) values in the
specified column. Additionally, it may exclude any columns if they have a standard deviation (
𝑠𝑖𝑔𝑚𝑎) of 0.

Parameters

• df (pandas DataFrame) – The data frame containing the data to be filtered.

• column (str) – Name of the column from which to filter out values.

• id_column (str) – Name of the column containing the unique response IDs.

• exclude_zeros (bool, optional) – Whether to exclude responses containing zeros in
the specified column. Defaults to False.

• exclude_zero_sd (bool, optional) – Whether to perform the additional filtering step
of removing columns that have
𝑠𝑖𝑔𝑚𝑎 = 0. Defaults to False.

Returns

• df_filtered (pandas DataFrame) – Data frame containing the responses that were not fil-
tered out.

• df_excluded (pandas DataFrame) – Data frame containing the non-numeric or zero re-
sponses that were filtered out.

Note: The columns with
𝑠𝑖𝑔𝑚𝑎 = 0 are removed from both output data frames, assuming exclude_zero_scores is True.

filter_on_flag_columns(df , flag_column_dict)
Filter based on specific flag columns.

Check that all flag_columns are present in the given data frame, convert these columns to strings and filter
out the values which do not match the condition in flag_column_dict.

Parameters

• df (pandas DataFrame) – The DataFrame to filter on.

• flag_column_dict (dict) – Dictionary containing the flag column information.

Returns
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• df_responses_with_requested_flags (pandas DataFrame) – Data frame containing the
responses remaining after filtering using the specified flag columns.

• df_responses_with_excluded_flags (pandas DataFrame) – Data frame containing the re-
sponses filtered out using the specified flag columns.

Raises

• KeyError – If the columns listed in the dictionary are not actually present in the data frame.

• ValueError – If no responses remain after filtering based on the flag column information.

generate_feature_names(df , reserved_column_names, feature_subset_specs, feature_subset)
Generate feature names from column names in data frame.

This method also selects the specified subset of features.

Parameters

• df (pandas DataFrame) – The data frame from which to generate feature names.

• reserved_column_names (list of str) – Names of reserved columns.

• feature_subset_specs (pandas DataFrame) – Feature subset specifications.

• feature_subset (str) – Feature subset column.

Returns
feature_names – A list of features names.

Return type
list of str

preprocess_feature(values, feature_name, feature_transform, feature_mean, feature_sd,
exclude_zero_sd=False, raise_error=True, truncations=None,
truncate_outliers=True)

Remove outliers and transform the values in given numpy array.

Use the given outlier and transformation parameters.

Parameters

• values (np.array) – The feature values to preprocess.

• feature_name (str) – Name of the feature being pre-processed.

• feature_transform (str) – Name of the transformation function to apply.

• feature_mean (float) – Mean value to use for outlier detection instead of the mean of
the given feature values.

• feature_sd (float) – Std. dev. value to use for outlier detection instead of the std. dev.
of the given feature values.

• exclude_zero_sd (bool, optional) – Exclude the feature if it has zero standard devi-
ation. Defaults to False.

• raise_error (bool, optional) – Raise an error if any of the transformations lead to
“inf” values or may change the ranking of feature values. Defaults to True.

• truncations (pandas DataFrame, optional) – A set of pre-defined truncation val-
ues. Defaults to None.

• truncate_outliers (bool, optional) – Whether to truncate outlier values. Defaults
to True.
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Returns
transformed_feature – Numpy array containing the transformed and clamped feature values.

Return type
np.array

Raises
ValueError – If the preprocessed feature values have zero standard deviation and
exclude_zero_sd is set to True.

preprocess_features(df_train, df_test, df_feature_specs, standardize_features=True,
use_truncations=False, truncate_outliers=True)

Preprocess features in given data using corresponding specifications.

Preprocess the feature values in the training and testing data frames whose specifications are contained
in df_feature_specs. Also returns a third data frame containing the feature specifications and other
information.

Parameters

• df_train (pandas DataFrame) – Data frame containing the raw feature values for the
training set.

• df_test (pandas DataFrame) – Data frame containing the raw feature values for the test
set.

• df_feature_specs (pandas DataFrame) – Data frame containing the various specifi-
cations from the feature file.

• standardize_features (bool, optional) – Whether to standardize the features. De-
faults to True.

• truncate_outliers (bool, optional) – Truncate outlier values if set in the config file
Defaults to True.

• use_truncations (bool, optional) – Whether we should use the truncation set for
removing outliers. Defaults to False.

Returns

• df_train_preprocessed (pandas DataFrame) – Data frame with preprocessed training
data.

• df_test_preprocessed (pandas DataFrame) – Data frame with preprocessed test data.

• df_feature_info (pandas DataFrame) – Data frame with feature information.

preprocess_new_data(df_input, df_feature_info, standardize_features=True, truncate_outliers=True)
Preprocess feature values using the parameters in df_feature_info.

For more details on what these preprocessing parameters are, see documentation.

Parameters

• df_input (pandas DataFrame) – Data frame with raw feature values that will be used
to generate the scores. Each feature is stored in a separate column. Each row corresponds
to one response. There should also be a column named “spkitemid” containing a unique
ID for each response.

• df_feature_info (pandas DataFrame) – Data frame with preprocessing parameters in
the following columns:

– ”feature” : the name of the feature; should match the feature names in df_input.
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– ”sign” : 1 or -1. Indicates whether the feature value needs to be multiplied by -1.

– ”transform” : transformation that needs to be applied to this feature.

– ”train_mean”, “train_sd” : mean and standard deviation for outlier truncation.

– ”train_transformed_mean”, “train_transformed_sd” : mean and standard deviation for
computing z-scores.

• standardize_features (bool, optional) – Whether the features should be standard-
ized prior to prediction. Defaults to True.

• truncate_outliers (bool, optional) – Whether outlier should be truncated prior to
prediction. Defaults to True.

Returns

• df_features_preprocessed (pandas DataFrame) – Data frame with processed feature val-
ues.

• df_excluded (pandas DataFrame) – Data frame with responses excluded from further anal-
ysis due to non-numeric feature values in the original file or after applying transformations.
This data frame always contains the original feature values.

Raises

• KeyError – if some of the features specified in df_feature_info are not present in
df_input.

• ValueError – If all responses have at least one non-numeric feature value and, therefore,
no score can be generated for any of the responses.

process_data(config_obj, data_container_obj, context='rsmtool')
Process and setup the data for an experiment in the given context.

Parameters

• config_obj (configuration_parser.Configuration) – A configuration object.

• data_container_obj (container.DataContainer) – A data container object.

• context (str) – The tool context: one of {“rsmtool”, “rsmeval”, “rsmpredict”}. Defaults
to “rsmtool”.

Returns

• config_obj (configuration_parser.Configuration) – A new configuration object.

• data_container (container.DataContainer) – A new data container object.

Raises
ValueError – If the context is not one of {“rsmtool”, “rsmeval”, “rsmpredict”}.

process_data_rsmeval(config_obj, data_container_obj)
Set up rsmeval experiment by loading & preprocessing evaluation data.

This function takes a configuration object and a container object as input and returns the same types of
objects as output after the loading, normalizing, and preprocessing.

Parameters

• config_obj (configuration_parser.Configuration) – A configuration object.

• data_container_obj (container.DataContainer) – A data container object.

Returns
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• config_obj (configuration_parser.Configuration) – A new configuration object.

• data_container (container.DataContainer) – A new data container object.

Raises

• KeyError – If columns specified in the configuration do not exist in the predictions file.

• ValueError – If the columns containing the human scores and the system scores in the
predictions file have the same name.

• ValueError – If the columns containing the first set of human scores and the second set
of human scores in the predictions file have the same name.

• ValueError – If the predictions file contains the same response ID more than once.

• ValueError – No responses were left after filtering out zero or non-numeric values for the
various columns.

process_data_rsmexplain(config_obj, data_container_obj)
Process data for rsmexplain experiments.

This function takes a configuration object and a container object as input and returns the same types of
objects as output after the loading, normalizing, and preprocessing.

Parameters

• config_obj (configuration_parser.Configuration) – A configuration object.

• data_container_obj (container.DataContainer) – A data container object.

Returns

• config_obj (configuration_parser.Configuration) – A new configuration object.

• data_congtainer (container.DataContainer) – A new data container object.

Raises
ValueError – If data contains duplicate response IDs.

process_data_rsmpredict(config_obj, data_container_obj)
Process data for rsmpredict experiments.

This function takes a configuration object and a container object as input and returns the same types of
objects as output after the loading, normalizing, and preprocessing.

Parameters

• config_obj (configuration_parser.Configuration) – A configuration object.

• data_container_obj (container.DataContainer) – A data container object.

Returns

• config_obj (configuration_parser.Configuration) – A new configuration object.

• data_congtainer (container.DataContainer) – A new data container object.

Raises

• KeyError – If columns specified in the configuration do not exist in the data.

• ValueError – If data contains duplicate response IDs.
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process_data_rsmtool(config_obj, data_container_obj)
Set up rsmtool experiment by loading & preprocessing train/test data.

This function takes a configuration object and a container object as input and returns the same types of
objects as output after the loading, normalizing, and preprocessing.

Parameters

• config_obj (configuration_parser.Configuration) – A configuration object.

• data_container_obj (container.DataContainer) – A data container object.

Returns

• config_obj (configuration_parser.Configuration) – A new configuration object.

• data_container (container.DataContainer) – A new data container object.

Raises

• ValueError – If columns specified in the configuration do not exist in the data.

• ValueError – If the test label column and second human score columns have the same
name.

• ValueError – If the length column is requested as a feature.

• ValueError – If the second human score column is requested as a feature.

• ValueError – If “use_truncations” was specified in the configuration, but no feature CSV
file was found.

process_predictions(df_test_predictions, train_predictions_mean, train_predictions_sd,
human_labels_mean, human_labels_sd, trim_min, trim_max,
trim_tolerance=0.4998)

Process predictions to create scaled, trimmed and rounded predictions.

Parameters

• df_test_predictions (pandas DataFrame) – Data frame containing the test set pre-
dictions.

• train_predictions_mean (float) – The mean of the predictions on the training set.

• train_predictions_sd (float) – The std. dev. of the predictions on the training set.

• human_labels_mean (float) – The mean of the human scores used to train the model.

• human_labels_sd (float) – The std. dev. of the human scores used to train the model.

• trim_min (float) – The lowest score on the score point, used for trimming the raw re-
gression predictions.

• trim_max (float) – The highest score on the score point, used for trimming the raw
regression predictions.

• trim_tolerance (float) – Tolerance to be added to trim_max and substracted from
trim_min. Defaults to 0.4998.

Returns
df_pred_processed – Data frame containing the various trimmed and rounded predictions.

Return type
pandas DataFrame
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static remove_outliers(values, mean=None, sd=None, sd_multiplier=4)
Remove outliers from given array of values by clamping them.

Clamp any given values that are ± sd_multiplier (𝑚) standard deviations (
𝑠𝑖𝑔𝑚𝑎) away from the mean (
𝑚𝑢). Use given mean and sd instead of computing
𝑠𝑖𝑔𝑚𝑎 and
𝑚𝑢, if specified. The values are clamped to the interval:

[

𝑚𝑢−𝑚*
𝑠𝑖𝑔𝑚𝑎,

𝑚𝑢+𝑚*
𝑠𝑖𝑔𝑚𝑎]

Parameters

• values (np.array) – The values from which to remove outliers.

• mean (int or float, optional) – Use the given mean value when computing outliers
instead of the mean from the data. Defaults to None.

• sd (None, optional) – Use the given std. dev. value when computing outliers instead
of the std. dev. from the data. Defaults to None.

• sd_multiplier (int, optional) – Use the given multipler for the std. dev. when com-
puting the outliers. Defaults to 4. Defaults to 4.

Returns
new_values – Numpy array with the outliers clamped.

Return type
np.array

remove_outliers_using_truncations(values, feature_name, truncations)
Remove outliers using pre-specified truncation groups.

This is different from remove_outliers() which calculates the outliers based on the training set.

Parameters

• values (np.array) – The values from which to remove outliers.

• feature_name (str) – Name of the feature whose outliers are being clamped.

• truncations (pandas DataFrame) – A data frame with truncation values. The features
should be set as the index.

Returns
new_values – Numpy array with the outliers clamped.

Return type
numpy array

rename_default_columns(df , requested_feature_names, id_column, first_human_score_column,
second_human_score_column, length_column, system_score_column,
candidate_column)

Standardize column names and rename columns with reserved column names.

RSMTool reserves some column names for internal use, e.g., “sc1”, “spkitemid” etc. If the given data al-
ready contains columns with these names, then they must be renamed to prevent conflict. This method re-
names such columns to “##NAME##”, e.g., an existing column named “sc1” will be renamed to “##sc1##”.
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Parameters

• df (pandas DataFrame) – The data frame containing the columns to rename.

• requested_feature_names (list of str) – List of feature column names that we
want to include in the scoring model.

• id_column (str) – Column name containing the response IDs.

• first_human_score_column (str or None.) – Column name containing the H1 scores.
Should be None if no H1 scores are available.

• second_human_score_column (str or None) – Column name containing the H2 scores.
Should be None if no H2 scores are available.

• length_column (str or None) – Column name containing response lengths. Should be
None if lengths are not available.

• system_score_column (str) – Column name containing the score predicted by the sys-
tem. This is only used for rsmeval.

• candidate_column (str or None) – Column name containing identifying information at
the candidate level. Should be None if such information is not available.

Returns
df – Modified input data frame with all the approximate re-namings.

Return type
pandas DataFrame

select_candidates(df , N , candidate_col='candidate')
Select candidates which have responses to N or more items.

Parameters

• df (pandas DataFrame) – The data frame from which to select candidates with N or more
items.

• N (int) – Minimal number of items per candidate

• candidate_col (str, optional) – Name of the column which contains candidate ids.
Defaults to “candidate”.

Returns

• df_included (pandas DataFrame) – Data frame with responses from candidates with re-
sponses to N or more items.

• df_excluded (pandas DataFrame) – Data frame with responses from candidates with re-
sponses to less than N items.

trim(values, trim_min, trim_max, tolerance=0.4998)
Trim values in given numpy array.

The trimming uses trim_min - tolerance as the floor and trim_max + tolerance as the ceiling.

Parameters

• values (list or np.array) – The values to trim.

• trim_min (float) – The lowest score on the score point, used for trimming the raw re-
gression predictions.

• trim_max (float) – The highest score on the score point, used for trimming the raw
regression predictions.
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• tolerance (float, optional) – The tolerance that will be used to compute the trim
interval. Defaults to 0.4998.

Returns
trimmed_values – Trimmed values.

Return type
np.array

class rsmtool.preprocessor.FeatureSpecsProcessor(logger=None)
Bases: object

Encapsulate feature file processing methods.

Initialize the FeatureSpecsProcessor object.

find_feature_sign(feature, sign_dict)
Get the feature sign from the feature CSV file.

Parameters

• feature (str) – The name of the feature.

• sign_dict (dict) – A dictionary of feature signs.

Returns
feature_sign_numeric – The signed feature.

Return type
float

generate_default_specs(feature_names)
Generate default feature “specifications” for given feature names.

The specifications are stored as a data frame with three columns “feature”, “transform”, and “sign”.

Parameters
feature_names (list of str) – List of feature names for which to generate specifica-
tions.

Returns
feature_specs – A dataframe with feature specifications that can be saved as a feature list file.

Return type
pandas DataFrame

Note: Since these are default specifications, the values for the “transform” column for each feature will be
“raw” and the value for the “sign” column will be 1.

generate_specs(df , feature_names, train_label, feature_subset=None, feature_sign=None)
Generate feature specifications using the feature CSV file.

Compute the specifications for “sign” and the correlation with score to identify the best transformation.

Parameters

• df (pandas DataFrame) – The input data frame from which to generate the specifications.

• feature_names (list of str) – A list of feature names.

• train_label (str) – The label column for the training data
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• feature_subset (pandas DataFrame, optional) – A data frame containing the fea-
ture subset specifications. Defaults to None.

• feature_sign (int, optional) – The sign of the feature. Defaults to None.

Returns
df_feature_specs – The output data frame containing the feature specifications.

Return type
pandas DataFrame

validate_feature_specs(df , use_truncations=False)
Validate given feature specifications.

Check given feature specifications to make sure that there are no duplicate feature names and that all
columns are in the right format. Add the default values for “transform” and “sign” if none are given.

Parameters

• df (pandas DataFrame) – The feature specification DataFrame to validate.

• use_truncations (bool, optional) – Whether to use truncation values. If this is True
and truncation values are not specified, an exception is raised. Defaults to False.

Returns
df_specs_new – The output data frame with normalized values.

Return type
pandas DataFrame

Raises

• KeyError – If the input data frame does not have a “feature” column.

• ValueError – If there are duplicate values in the “feature” column.

• ValueError – if the “sign” column contains invalid values.

• ValueError – If use_truncations is set to True, and no “min” and “max” columns
exist in the data set.

class rsmtool.preprocessor.FeatureSubsetProcessor(logger=None)
Bases: object

Class to encapsulate feature sub-setting methods.

Initialize the FeatureSubsetProcessor object.

check_feature_subset_file(df , subset=None, sign=None)
Check that feature subset file is complete and in the correct format.

Raises an exception if it finds any errors but otherwise returns nothing.

Parameters

• df (pandas DataFrame) – The data frame containing the feature subset file.

• subset (str, optional) – Name of a pre-defined feature subset. Defaults to None.

• sign (str, optional) – Value of the sign. Defaults to None.

Raises

• ValueError – If any columns are missing from the subset file.

• ValueError – If any of the columns contain invalid values.
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select_by_subset(feature_columns, feature_subset_specs, subset)
Select feature columns using feature subset specifications.

Parameters

• feature_columns (list of str) – A list of feature columns

• feature_subset_specs (pandas DataFrame) – The feature subset specification data
frame.

• subset (str) – The column to subset.

Returns
feature_names – A list of feature names to include.

Return type
list of str

From prmse Module

rsmtool.utils.prmse.prmse_true(system, human_scores, variance_errors_human=None)
Compute PRMSE when predicting true score from system scores.

PRMSE = Proportional Reduction in Mean Squared Error. The formula to compute PRMSE implemented in
RSMTool was derived at ETS by Matthew S. Johnson. See Loukina et al. (2020) for further information about
PRMSE.

Parameters

• system (array-like of shape (n_samples,)) – System scores for each response.

• human_scores (array-like of shape (n_samples, n_ratings)) – Human ratings
for each response.

• variance_errors_human (float, optional) – Estimated variance of errors in human
scores. If None, the variance will be estimated from the data. In this case at least some
responses must have more than one human score. Defaults to None.

Returns
prmse – Proportional reduction in mean squared error

Return type
float

rsmtool.utils.prmse.variance_of_errors(human_scores)
Estimate the variance of errors in human scores.

Parameters
human_scores (array-like of shape (n_samples, n_ratings)) – Human ratings for
each response.

Returns
variance_of_errors – Estimated variance of errors in human scores.

Return type
float
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From reader Module

Classes for reading data files (or dictionaries) into DataContainer objects.

author
Jeremy Biggs (jbiggs@ets.org)

author
Anastassia Loukina (aloukina@ets.org)

author
Nitin Madnani (nmadnani@ets.org)

organization
ETS

class rsmtool.reader.DataReader(filepaths, framenames, file_converters=None)
Bases: object

Class to generate DataContainer objects.

Initialize a DataReader object.

Parameters

• filepaths (list of str) – A list of paths to files that are to be read in.

• framenames (list of str) – A list of names for the data sets to be included in the con-
tainer.

• file_converters (dict of dicts, optional) – A dictionary of file converter dicts.
The keys are the data set names and the values are the converter dictionaries to be applied to
the corresponding data set. Defaults to None.

Raises

• AssertionError – If len(filepaths) does not equal len(framenames).

• ValueError – If file_converters is not a dictionary or if any of its values is not a dic-
tionary.

• NameError – If a key in file_converters does not exist in framenames.

• ValueError – If any of the specified file paths is None.

static locate_files(filepaths, configdir)
Locate an experiment file, or a list of experiment files.

If the given path doesn’t exist, then maybe the path is relative to the path of the config file. If neither exists,
then return None.

Parameters

• filepaths (str or list) – Name(s) of the experiment file we want to locate.

• configdir (str) – Path to the reference configuration directory (usually the directory of
the config file)

Returns
retval – Absolute path to the experiment file or None if the file could not be located. If
filepaths was a string, this method will return a string. Otherwise, it will return a list.

Return type
str or list
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Raises
ValueError – If filepaths is not a string or a list.

read(kwargs_dict=None)
Read all files contained in self.dataset_paths.

Parameters
kwargs_dict (dict of dicts, optional) – Any additional keyword arguments to pass
to a particular DataFrame. These arguments will be passed to the pandas IO reader function.
Defaults to None.

Returns
datacontainer – A data container object.

Return type
container.DataContainer

Raises
FileNotFoundError – If any of the files in self.dataset_paths does not exist.

static read_from_file(filename, converters=None, **kwargs)
Read a CSV/TSV/XLSX/JSONLINES/SAS7BDAT file and return a data frame.

Parameters

• filename (str) – Name of file to read.

• converters (dict, optional) – A dictionary specifying how the types of the columns
in the file should be converted. Specified in the same format as for pandas.read_csv()`.
Defaults to None.

Returns
df – Data frame containing the data in the given file.

Return type
pandas DataFrame

Raises

• ValueError – If the file has an unsuppored extension.

• pandas.errors.ParserError – If the file is badly formatted or corrupt.

Note: Any additional keyword arguments are passed to the underlying pandas IO reader function.

rsmtool.reader.read_jsonlines(filename, converters=None)
Read a data file in .jsonlines format into a data frame.

Normalize nested jsons with up to one level of nesting.

Parameters

• filename (str) – Name of file to read.

• converters (dict, optional) – A dictionary specifying how the types of the columns
in the file should be converted. Specified in the same format as for pandas.read_csv().
Defaults to None.

Returns
df – Data frame containing the data in the given file.
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Return type
pandas DataFrame

rsmtool.reader.try_to_load_file(filename, converters=None, raise_error=False, raise_warning=False,
**kwargs)

Read a single file, if it exists.

Optionally raises an error or warning if the file cannot be found. Otherwise, returns None.

Parameters

• filename (str) – Name of file to read.

• converters (dict, optional) – A dictionary specifying how the types of the columns
in the file should be converted. Specified in the same format as for pandas.read_csv().
Defaults to None.

• raise_error (bool, optional) – Raise an error if the file cannot be located. Defaults to
False.

• raise_warning (bool, optional) – Raise a warning if the file cannot be located. De-
faults to False.

Returns
df – DataFrame containing the data in the given file, or None if the file does not exist.

Return type
pandas DataFrame or None

Raises
FileNotFoundError – If raise_error is True and the file cannot be located.

From reporter Module

Classes for dealing with report generation.

author
Jeremy Biggs (jbiggs@ets.org)

author
Anastassia Loukina (aloukina@ets.org)

author
Nitin Madnani (nmadnani@ets.org)

organization
ETS

class rsmtool.reporter.Reporter(logger=None, wandb_run=None)
Bases: object

Class to generate Jupyter notebook reports and convert them to HTML.

Initialize the Reporter object.

static check_section_names(specified_sections, section_type, context='rsmtool')
Validate the specified section names.

This function checks whether the specified section names are valid and raises an exception if they are not.

Parameters

• specified_sections (list of str) – List of report section names.

1.10. API Documentation 151

mailto:jbiggs@ets.org
mailto:aloukina@ets.org
mailto:nmadnani@ets.org


Rater Scoring Modeling Tool, Release 11.3.0

• section_type (str) – One of “general” or “special”.

• context (str, optional) – Context in which we are validating the section names. One
of {“rsmtool”, “rsmeval”, “rsmcompare”}. Defaults to “rsmtool”.

Raises
ValueError – If any of the section names of the given type are not valid in the context of the
given tool.

static check_section_order(chosen_sections, section_order)
Check the order of the specified sections.

Parameters

• chosen_sections (list of str) – List of chosen section names.

• section_order (list of str) – An ordered list of the chosen section names.

Raises
ValueError – If any sections specified in the order are missing from the list of chosen sec-
tions or vice versa.

static convert_ipynb_to_html(notebook_file, html_file)
Convert given Jupyter notebook (.ipynb) to HTML file.

Parameters

• notebook_file (str) – Path to input Jupyter notebook file.

• html_file (str) – Path to output HTML file.

Note: This function is also exposed as the render_notebook command-line utility.

create_comparison_report(config, csvdir_old, figdir_old, csvdir_new, figdir_new, output_dir)
Generate an HTML report for comparing two rsmtool experiments.

Parameters

• config (configuration_parser.Configuration) – A configuration object

• csvdir_old (str) – The old experiment CSV output directory.

• figdir_old (str) – The old figure output directory

• csvdir_new (str) – The new experiment CSV output directory.

• figdir_new (str) – The old figure output directory

• output_dir (str) – The output dir for the new report.

create_explanation_report(config, csv_dir, output_dir)
Generate a html report for rsmexplain.

Parameters

• config (configuration_parser.Configuration) – A configuration object

• csv_dir (str) – The experiment output directory containing CSV files with SHAP values

• output_dir (str) – The directory for the html report
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create_report(config, csvdir, figdir, context='rsmtool')
Generate HTML report for an rsmtool/rsmeval experiment.

Parameters

• config (configuration_parser.Configuration) – A configuration object

• csvdir (str) – The CSV output directory.

• figdir (str) – The figure output directory

• context (str) – Context of the tool in which we are validating. One of {“rsmtool”,
“rsmeval”}. Defaults to “rsmtool”.

Raises
KeyError – If “test_file_location” or “pred_file_location” fields are not specified in the con-
figuration.

create_summary_report(config, all_experiments, csvdir)
Generate an HTML report for summarizing the given rsmtool experiments.

Parameters

• config (configuration_parser.Configuration) – A configuration object

• all_experiments (list of str) – A list of experiment configuration files to summa-
rize.

• csvdir (str) – The experiment CSV output directory.

determine_chosen_sections(general_sections, special_sections, custom_sections, subgroups,
context='rsmtool')

Compile a combined list of section names to be included in the report.

Parameters

• general_sections (list of str) – List of specified general section names.

• special_sections (str) – List of specified special section names, if any.

• custom_sections (list of str) – List of specified custom sections, if any.

• subgroups (list of str) – List of column names that contain grouping information.

• context (str, optional) – Context of the tool in which we are validating. One of
{“rsmtool”, “rsmeval”, “rsmcompare”} Defaults to “rsmtool”.

Returns
chosen_sections – Final list of chosen sections that are to be included in the HTML report.

Return type
list of str

Raises
ValueError – If a subgroup report section is requested but no subgroups were specified in
the configuration file.

get_ordered_notebook_files(general_sections, special_sections=[], custom_sections=[],
section_order=None, subgroups=[], model_type=None, context='rsmtool')

Check all section names and the order of the sections.

Combine all section names with the appropriate file mapping, and generate an ordered list of notebook files
that are needed to generate the final report.

Parameters
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• general_sections (str) – List of specified general sections.

• special_sections (list, optional) – List of specified special sections, if any. De-
faults to [].

• custom_sections (list, optional) – List of specified custom sections, if any. De-
faults to [].

• section_order (list, optional) – Ordered list in which the user wants the specified
sections. Defaults to None.

• subgroups (list, optional) – List of column names that contain grouping informa-
tion. Defaults to [].

• model_type (None, optional) – Type of the model. Possible values are {“BUILTIN”,
“SKLL”, None.}. We allow None here so that rsmeval can use the same function. Defaults
to None.

• context (str, optional) – Context of the tool in which we are validating. One of
{“rsmtool”, “rsmeval”, “rsmcompare”}. Defaults to “rsmtool”.

Returns
chosen_notebook_files – List of the IPython notebook files that have to be rendered into the
HTML report.

Return type
list of str

get_section_file_map(special_sections, custom_sections, model_type=None, context='rsmtool')
Map section names to IPython notebook filenames.

Parameters

• special_sections (list of str) – List of special sections.

• custom_sections (list of str) – List of custom sections.

• model_type (str, optional) – Type of the model. One of {“BUILTIN”, “SKLL”,
None}. We allow None here so that rsmeval can use the same function. Defaults to None.

• context (str, optional) – Context of the tool in which we are validating. One of
{“rsmtool”, “rsmeval”, “rsmcompare”}. Defaults to “rsmtool”.

Returns
section_file_map – Dictionary mapping each section name to the corresponding IPython
notebook filename.

Return type
dict

static locate_custom_sections(custom_report_section_paths, configdir)
Locate custom report section files.

Get the absolute paths for custom report sections and check that the files exist. If a file does not exist, raise
an exception.

Parameters

• custom_report_section_paths (list of str) – List of paths to IPython notebook
files representing the custom sections.

• configdir (str) – Path to the experiment configuration directory.
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Returns
custom_report_sections – List of absolute paths to the custom section notebooks.

Return type
list of str

Raises
FileNotFoundError – If any of the files cannot be found.

static merge_notebooks(notebook_files, output_file)
Merge the given Jupyter notebooks into a single Jupyter notebook.

Parameters

• notebook_files (list of str) – List of paths to the input Jupyter notebook files.

• output_file (str) – Path to output Jupyter notebook file

From transformer Module

Class for transforming features.

author
Jeremy Biggs (jbiggs@ets.org)

author
Anastassia Loukina (aloukina@ets.org)

author
Nitin Madnani (nmadnani@ets.org)

organization
ETS

class rsmtool.transformer.FeatureTransformer(logger=None)
Bases: object

Encapsulate feature transformation methods.

Initialize the FeatureTransformer object.

apply_add_one_inverse_transform(name, values, raise_error=True)
Apply the “addOneInv” (add one and invert) transform to values.

Parameters

• name (str) – Name of the feature to transform.

• values (np.array) – Numpy array containing the feature values.

• raise_error (bool, optional) – If True, raises an error if the transform is applied to
a feature that has zero or negative values. Defaults to True.

Returns
new_data – Numpy array containing the transformed feature values.

Return type
np.array

Raises
ValueError – If the transform is applied to a feature that has negative values and
raise_error is True.
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apply_add_one_log_transform(name, values, raise_error=True)
Apply the “addOneLn” (add one and log) transform to values.

Parameters

• name (str) – Name of the feature to transform.

• values (np.array) – Numpy array containing the feature values.

• raise_error (bool, optional) – If True, raises an error if the transform is applied to
a feature that has zero or negative values. Defaults to True.

Returns
new_data – Numpy array that contains the transformed feature values.

Return type
np.array

Raises
ValueError – If the transform is applied to a feature that has negative values and
raise_error is True.

apply_inverse_transform(name, values, raise_error=True, sd_multiplier=4)
Apply the “inv” (inverse) transform to values.

Parameters

• name (str) – Name of the feature to transform.

• values (np.array) – Numpy array containing the feature values.

• raise_error (bool, optional) –

If True, raises an error if the transform is applied to
a feature that has zero values or to a feature that has

both positive and negative values.
Defaults to True.

• sd_multiplier (int, optional) – Use this std. dev. multiplier to compute the ceiling
and floor for outlier removal and check that these are not equal to zero. Defaults to 4.

Returns
new_data – Numpy array containing the transformed feature values.

Return type
np.array

Raises
ValueError – If the transform is applied to a feature that is zero or to a feature that can have
different signs, and raise_error is True.

apply_log_transform(name, values, raise_error=True)
Apply the “log” transform to values.

Parameters

• name (str) – Name of the feature to transform.

• values (np.array) – Numpy array containing the feature values.

• raise_error (bool, optional) – If True, raises an error if the transform is applied to
a feature that has zero or negative values. Defaults to True.
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Returns
new_data – Numpy array containing the transformed feature values.

Return type
numpy array

Raises
ValueError – If the transform is applied to a feature that has zero or negative values and
raise_error is True.

apply_sqrt_transform(name, values, raise_error=True)
Apply the “sqrt” transform to values.

Parameters

• name (str) – Name of the feature to transform.

• values (np.array) – Numpy array containing the feature values.

• raise_error (bool, optional) – If True, raises an error if the transform is applied to
a feature that has negative values. Defaults to True.

Returns
new_data – Numpy array containing the transformed feature values.

Return type
np.array

Raises
ValueError – If the transform is applied to a feature that has negative values and
raise_error is True.

find_feature_transform(feature_name, feature_value, scores)
Identify best transformation for feature given correlation with score.

The best transformation is chosen based on the absolute Pearson correlation with human score.

Parameters

• feature_name (str) – Name of feature for which to find the transformation.

• feature_value (pandas Series) – Series containing feature values.

• scores (pandas Series) – Numeric human scores.

Returns
best_transformation – The name of the transformation which gives the highest correlation
between the feature values and the human scores. See documentation for the full list of trans-
formations.

Return type
str

transform_feature(values, column_name, transform, raise_error=True)
Apply given transform to all values in the given numpy array.

The values are assumed to be for the feature with the given name.

Parameters

• values (numpy array) – Numpy array containing the feature values.

• column_name (str) – Name of the feature to transform.
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• transform (str) – Name of the transform to apply. One of {“inv”, “sqrt”, “log”, “ad-
dOneInv”, “addOneLn”, “raw”, “org”}.

• raise_error (bool, optional) – If True, raise a ValueError if a transformation leads
to invalid values or may change the ranking of the responses. Defaults to True.

Returns
new_data – Numpy array containing the transformed feature values.

Return type
np.array

Raises
ValueError – If the given transform is not recognized.

Note: Many of these transformations may be meaningless for features which span both negative and
positive values. Some transformations may throw errors for negative feature values.

From utils Module

class rsmtool.utils.commandline.ConfigurationGenerator(context, as_string=False,
suppress_warnings=False,
use_subgroups=False)

Class to encapsulate automated batch-mode and interactive generation.

context

Name of the command-line tool for which we are generating the configuration file.

Type
str

as_string

If True, return a formatted and indented string representation of the configuration, rather than a dictio-
nary. Note that this only affects the batch-mode generation. Interactive generation always returns a string.
Defaults to False.

Type
bool, optional

suppress_warnings

If True, do not generate any warnings for batch-mode generation. Defaults to False.

Type
bool, optional

use_subgroups

If True, include subgroup-related sections in the list of general sections in the configuration file. Defaults
to False.

Type
bool, optional

ConfigurationGenerator.generate()

Automatically generate an example configuration in batch mode.

Returns
configuration – The generated configuration either as a dictionary or a formatted string, depend-
ing on the value of as_string.
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Return type
dict or str

rsmtool.utils.metrics.agreement(score1, score2, tolerance=0)
Compute the agreement between two raters, under given tolerance.

Parameters

• score1 (list of int) – List of rater 1 scores

• score2 (list of int) – List of rater 2 scores

• tolerance (int, optional) – Difference in scores that is acceptable. Defaults to 0.

Returns
agreement_value – The percentage agreement between the two scores.

Return type
float

rsmtool.utils.metrics.difference_of_standardized_means(y_true_observed, y_pred,
population_y_true_observed_mn=None,
population_y_pred_mn=None,
population_y_true_observed_sd=None,
population_y_pred_sd=None, ddof=1)

Calculate the difference between standardized means.

First, standardize both observed and predicted scores to z-scores using mean and standard deviation for the whole
population. Then calculate differences between standardized means for each subgroup.

Parameters

• y_true_observed (array-like) – The observed scores for the group or subgroup.

• y_pred (array-like) – The predicted score for the group or subgroup. The predicted
scores.

• population_y_true_observed_mn (float, optional) – The population true score
mean. When the DSM is being calculated for a subgroup, this should be the mean for the
whole population. Defaults to None.

• population_y_pred_mn (float, optional) – The predicted score mean. When the
DSM is being calculated for a subgroup, this should be the mean for the whole population.
Defaults to None.

• population_y_true_observed_sd (float, optional) – The population true score
standard deviation. When the DSM is being calculated for a subgroup, this should be the
standard deviation for the whole population. Defaults to None.

• population_y_pred_sd (float, optional) – The predicted score standard deviation.
When the DSM is being calculated for a subgroup, this should be the standard deviation for
the whole population. Defaults to None.

• ddof (int, optional) – The delta degrees of freedom. The divisor used in calculations
is N - ddof, where N represents the number of elements. Defaults to 1.

Returns
difference_of_std_means – The difference of standardized means

Return type
array-like

Raises
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• ValueError – If only one of population_y_true_observed_mn and
population_y_true_observed_sd is not None.

• ValueError – If only one of population_y_pred_mn and population_y_pred_sd is
not None.

rsmtool.utils.metrics.partial_correlations(df )
Implement the R pcor function from ppcor package in Python.

This computes partial correlations of each pair of variables in the given data frame df, excluding all other vari-
ables.

Parameters
df (pd.DataFrame) – Data frame containing the feature values.

Returns
df_pcor – Data frame containing the partial correlations of of each pair of variables in the given
data frame df, excluding all other variables.

Return type
pd.DataFrame

rsmtool.utils.metrics.quadratic_weighted_kappa(y_true_observed, y_pred, ddof=0)
Calculate quadratic-weighted kappa for both discrete and continuous values.

The formula to compute quadratic-weighted kappa for continuous values was developed at ETS by Shelby Haber-
man. See Haberman (2019) for the full derivation. The discrete case is simply treated as a special case of the
continuous one.

The formula is as follows:

𝑄𝑊𝐾 =
2 * 𝐶𝑜𝑣(𝑀,𝐻)

𝑉 𝑎𝑟(𝐻) + 𝑉 𝑎𝑟(𝑀) + (�̄� − �̄�)2
, where

• 𝐶𝑜𝑣 - covariance with normalization by 𝑁 (total number of observations)

• 𝐻 - the human score

• 𝑀 - the system score

• �̄� - mean of 𝐻

• �̄� - mean of 𝑀

• 𝑉 𝑎𝑟(𝑋) - variance of X

Parameters

• y_true_observed (array-like) – The observed scores.

• y_pred (array-like) – The predicted scores.

• ddof (int, optional) – Means Delta Degrees of Freedom. The divisor used in calcula-
tions is N - ddof, where N represents the number of elements. When ddof is set to zero, the
results for discrete case match those from the standard implementations. Defaults to 0.

Returns
kappa – The quadratic weighted kappa

Return type
float

Raises
AssertionError – If the number of elements in y_true_observed is not equal to the number
of elements in y_pred.
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rsmtool.utils.metrics.standardized_mean_difference(y_true_observed, y_pred,
population_y_true_observed_sd=None,
population_y_pred_sd=None,
method='unpooled', ddof=1)

Compute the standardized mean difference between system and human scores.

The numerator is calculated as mean(y_pred) - mean(y_true_observed) for all of the available methods.

Parameters

• y_true_observed (array-like) – The observed scores for the group or subgroup.

• y_pred (array-like) – The predicted score for the group or subgroup.

• population_y_true_observed_sd (float, optional) – The population true score
standard deviation. When the SMD is being calculated for a subgroup, this should be the
standard deviation for the whole population. Defaults to None.

• population_y_pred_sd (float, optional) – The predicted score standard deviation.
When the SMD is being calculated for a subgroup, this should be the standard deviation for
the whole population. Defaults to None.

• method (str, optional) – The SMD method to use. Possible options are:

– ”williamson”: Denominator is the pooled population standard deviation of
y_true_observed and y_pred computed using population_y_true_observed_sd
and population_y_pred_sd.

– ”johnson”: Denominator is population_y_true_observed_sd.

– ”pooled”: Denominator is the pooled standard deviation of y_true_observed and
y_pred for this group.

– ”unpooled”: Denominator is the standard deviation of y_true_observed for this group.

Defaults to “unpooled”.

• ddof (int, optional) – The delta degrees of freedom. The divisor used in calculations
is N - ddof, where N represents the number of elements. Defaults to 1.

Returns
smd – The SMD for the given group or subgroup.

Return type
float

Raises

• ValueError – If method is “williamson” and either population_y_true_observed_sd
or population_y_pred_sd is None.

• ValueError – If method is “johnson” and population_y_true_observed_sd is None.

• ValueError – If method is not one of {“unpooled”, “pooled”, “williamson”, “johnson”}.

Note:

• The “williamson” implementation was recommended by Williamson, et al. (2012).

• The metric is only applicable when both sets of scores are on the same scale.
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rsmtool.utils.metrics.compute_expected_scores_from_model(model, featureset, min_score, max_score)
Compute expected scores using probability distributions over labels.

This function only works with SKLL models.

Parameters

• model (skll.learner.Learner) – The SKLL learner object to use for computing the ex-
pected scores.

• featureset (skll.data.FeatureSet) – The SKLL featureset object for which predic-
tions are to be made.

• min_score (int) – Minimum score level to be used for computing expected scores.

• max_score (int) – Maximum score level to be used for computing expected scores.

Returns
expected_scores – A numpy array containing the expected scores.

Return type
np.array

Raises

• ValueError – If the given model cannot predict probability distributions.

• ValueError – If the score range specified by min_score and max_score does not match
what the model predicts in its probability distribution.

rsmtool.utils.notebook.get_thumbnail_as_html(path_to_image, image_id, path_to_thumbnail=None)
Generate HTML for a clickable thumbnail of given image.

Given the path to an image file, generate the HTML for a clickable thumbnail version of the image. When clicked,
this HTML will open the full-sized version of the image in a new window.

Parameters

• path_to_image (str) – The absolute or relative path to the image. If an absolute path is
provided, it will be converted to a relative path.

• image_id (int) – The id of the <img> tag in the HTML. This must be unique for each
<img> tag.

• path_to_thumbnail (str, optional) – If you would like to use a different thumbnail
image, specify the path to this thumbnail. Defaults to None.

Returns
image – The HTML string generated for the image.

Return type
str

Raises
FileNotFoundError – If the image file cannot be located.

rsmtool.utils.notebook.show_thumbnail(path_to_image, image_id, path_to_thumbnail=None)
Display the HTML for an image thumbnail in a Jupyter notebook.

Given the path to an image file, generate the HTML for its thumbnail and display it in the notebook.

Parameters

• path_to_image (str) – The absolute or relative path to the image. If an absolute path is
provided, it will be converted to a relative path.
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• image_id (int) – The id of the <img> tag in the HTML. This must be unique for each
<img> tag.

• path_to_thumbnail (str, optional) – If you would like to use a different thumbnail
image, specify the path to the thumbnail. Defaults to None.

• Displays –

• -------- –

• display (IPython.core.display.HTML) – The HTML for the thumbnail image.

rsmtool.utils.files.parse_json_with_comments(pathlike)
Parse a JSON file after removing any comments.

Comments can use either // for single-line comments or or /* ... */ for multi-line comments. The input
filepath can be a string or pathlib.Path.

Parameters
filename (str or os.PathLike) – Path to the input JSON file either as a string or as a
pathlib.Path object.

Returns
obj – JSON object representing the input file.

Return type
dict

Note: This code was adapted from: https://web.archive.org/web/20150520154859/http://www.lifl.fr/~riquetd/
parse-a-json-file-with-comments.html

From writer Module

Class for writing DataContainer frames to disk.

author
Jeremy Biggs (jbiggs@ets.org)

author
Anastassia Loukina (aloukina@ets.org)

author
Nitin Madnani (nmadnani@ets.org)

organization
ETS

class rsmtool.writer.DataWriter(experiment_id=None, context=None, wandb_run=None)
Bases: object

Class to write out DataContainer objects.

Initialize the DataWriter object.

Parameters

• experiment_id (str) – The experiment name to be used in the output file names

• context (str) – The context in which this writer is used. Defaults to None.
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• wandb_run (wandb.Run) – The wandb run object if wandb is enabled, None otherwise. If
enabled, all the output data frames will be logged to this run as tables. Defaults to None.

write_experiment_output(csvdir, container_or_dict, dataframe_names=None, new_names_dict=None,
include_experiment_id=True, reset_index=False, file_format='csv',
index=False, **kwargs)

Write out each of the named frames to disk.

This function writes out each of the given list of data frames as a “.csv”, “.tsv”, or .xlsx file in the given
directory. Each data frame was generated as part of running an RSMTool experiment. All files are prefixed
with the given experiment ID and suffixed with either the name of the data frame in the DataContainer (or
dict) object, or a new name if new_names_dict is specified. Additionally, the indexes in the data frames
are reset if so specified.

Parameters

• csvdir (str) – Path to the output experiment sub-directory that will contain the CSV files
corresponding to each of the data frames.

• container_or_dict (container.DataContainer or dict) – A DataContainer ob-
ject or dict, where keys are data frame names and values are pd.DataFrame objects.

• dataframe_names (list of str, optional) – List of data frame names, one for each
of the data frames. Defaults to None.

• new_names_dict (dict, optional) – New dictionary with new names for the data
frames, if desired. Defaults to None.

• include_experiment_id (str, optional) – Whether to include the experiment ID in
the file name. Defaults to True.

• reset_index (bool, optional) – Whether to reset the index of each data frame before
writing to disk. Defaults to False.

• file_format (str, optional) – The file format in which to output the data. One of
{“csv”, “xlsx”, “tsv”}. Defaults to “csv”.

• index (bool, optional) – Whether to include the index in the output file. Defaults to
False.

Raises
KeyError – If file_format is not valid, or a named data frame is not present in
container_or_dict.

write_feature_csv(featuredir, data_container, selected_features, include_experiment_id=True,
file_format='csv')

Write out the selected features to disk.

Parameters

• featuredir (str) – Path to the experiment output directory where the feature JSON file
will be saved.

• data_container (container.DataContainer) – A data container object.

• selected_features (list of str) – List of features that were selected for model
building.

• include_experiment_id (bool, optional) – Whether to include the experiment ID
in the file name. Defaults to True.

• file_format (str, optional) – The file format in which to output the data. One of
{“csv”, “tsv”, “xlsx”}. Defaults to “csv”.
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static write_frame_to_file(df , name_prefix, file_format='csv', index=False, **kwargs)
Write given data frame to disk with given name and file format.

Parameters

• df (pandas DataFrame) – Data frame to write to disk

• name_prefix (str) – The complete prefix for the file to be written to disk. This includes
everything except the extension.

• file_format (str) – The file format (extension) for the file to be written to disk. One of
{“csv”, “xlsx”, “tsv”}. Defaults to “csv”.

• index (bool, optional) – Whether to include the index in the output file. Defaults to
False.

Raises
KeyError – If file_format is not valid.

1.11 Utility Scripts

In addition to the rsmtool, rsmeval, rsmpredict, rsmcompare, and rsmsummarize scripts, RSMTool also comes with a
number of helpful utility scripts.

1.11.1 render_notebook

Convert a given Jupyter notebook file (.ipynb) to HTML (.html) format.

ipynb_file

Path to input Jupyter notebook file.

html_file

Path to output HTML file.

-h, --help

Show help message and exit.

1.11.2 convert_feature_json

Convert an older feature JSON file to a new file in tabular format.

--json

Path to input feature JSON file that is to be converted.

--output

Path to output CSV/TSV/XLSX file containing the features in tabular format.

--delete

Delete original feature JSON file after conversion.

-h, --help

Show help message and exit.
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1.12 Frequently Asked Questions

. Can I train a deep learning model using RSMTool? [#]

rsmtool supports a large number of learners but not deep learning algorithms. However, you can still use rsmeval to
obtain a comprehensive evaluation report from any model.

. How can I customize rsmtool and rsmeval reports? [#]

The reports generated by rsmtool and rsmeval are designed to be fully customizable. You can:

• Omit sections using the general_sections configuration option;

• Change the order of the sections using the section_order option;

• Create your own “custom” sections.

. I get the following error: No responses remaining after filtering out non-numeric feature
values. No further analysis can be run. What happened? [#]

rsmtool is designed to work only with numeric features. Non-numeric values including missing values are filtered
out. Some of the common reasons for this error are:

• The human score column or one of the features contains only non-numeric values. You can either exclude this
feature or convert it to one-hot encoding

• You have features with missing values. The solution is to replace missing values with zeros. Note that this applies
even if you use the .jsonlines format. We have an open issue to provide an option to automatically convert
missing values to zeros.

• You have a lot of missing feature values and none of the responses has numeric features for every single feature.
Inspect the *_excluded_responses files in the output directory to see what responses have been excluded.

. Can I pass a set of learners to the model option in the configuration file or do I need a separate run for each
leaner I want to try? [#]

rsmtool cannot train multiple models via a configuration file. If you wish to use multiple learners/models, you should
use the RSMTool API instead of the command line.

. Can I compute predictions on new data using a model trained with rsmtool ? [#]

Yes! We have built rsmpredict to do exactly this!

. Why did rsmtool change the sign of some features in feature.csv ? I thought rsmtool assumes a positive
sign for all features? [#]

rsmtool indeed assumes a default positive sign for all raw features. However, if you set select_transformations to
true in your experiment configuration file, RSMTool will automatically apply transformations to some of the features.
Some transformations such as inv (inverse transform) change the polarity of the feature. In such cases, RSMTool takes
this into account and changes the sign accordingly. See note here.

. Why does rsmpredict exclude a different number of responses compared to rsmtool ? [#]

This mismatch may happen due to the following:
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1. First, rsmtool is run with one of the built-in feature selection models and excludes responses where any of the
candidate features has missing/non-numeric values in either the training or the evaluation set. Next, it performs
the feature selection, trains a model with those features using the filtered training set and generates predictions
on the filtered test set.

2. Next, rsmpredict is run to generate predictions on the evaluation set using the trained model and excludes only
those responses where any of the selected features (a subset of the original features) has missing/non-numeric
values.

As a result, there is a mismatch in the number of predictions generated by rsmtool and rsmpredict.

. The relative betas for the linear regression model in my rsmtool run do not sum to 1. Is that a problem? [#]

Please check if your model has any negative coefficients. Relative coefficients only make sense when all model coef-
ficients are positive. Their sum is expected to be less than 1 if there are negative coefficients. Note that if this is the
case, the relative coefficients will not be included into the report.

. Can I use Weights & Biases to log artifacts and reports? [#]

Yes! W&B logging is natively supported by the following command-line tools: rsmtool, rsmeval, rsmxval,
rsmexplain, rsmcompare, and rsmsummarize. To enable it, set the use_wandb configuration option to true and set
the wandb_entity and wandb_project options appropriately.

. It’s so difficult to remember all the configuration options. [#]

We agree that it can be quite overwhelming to remember all the configuration options. This is why all command-line
tools support automatic generation of configuration files!

1.13 Contributing to RSMTool

Contributions to RSMTool are very welcome. You can use the instructions below to get started on developing new
features or functionality for RSMTool. When contributing to RSMTool, all of your contributions must come with
updates to documentation as well as tests.

1.13.1 Setting up

To set up a local development environment, follow the steps below:

1. Clone the Github repository for RSMTool. If you have already have a local version of the repository, pull the
latest version from GitHub and switch to the main branch.

2. If you already have the conda package manager installed, skip to the next step. If you do not, follow the instruc-
tions on this page to install conda.

3. Create a new conda environment (say, rsmdev) and install the packages specified in the requirements.txt
file by running:

conda create -n rsmdev -c conda-forge -c ets --file requirements.txt

4. Activate the environment using conda activate rsmdev.

5. Run pip install -e . to install rsmtool into the environment in editable mode which is what we need for
development.
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6. Run pre-commit install --hook-type pre-commit --hook-type commit-msg --overwrite
--install-hooks to install the git hooks for pre-commit checks.

7. Create a new git branch with a useful and descriptive name.

8. Make your changes and add tests. See the next section for more on writing new tests.

9. Run nose2 --quiet -s tests to run the tests. We use the --quiet switch, since otherwise test failures for
some tests tend to produce very long Jupyter notebook traces.

1.13.2 Documentation

Note that the file doc/requirements.txt is meant specifically for the ReadTheDocs documentation build process
and should not be used locally. To build the documentation locally, you must use the same conda environment created
above.

1.13.3 Code style

The RSMTool codebase enforces a certain code style via pre-commit checks and this style is automatically applied to
any new contributions. This code style consists of:

1. All Python code is formatted via the black pre-commit check.

2. The f-string specification is used for all format strings in the Python code as enforced by the flynt pre-commit
check.

3. Any code violations for PEP 8, PEP 257, and import statements are checked using the ruff pre-commit check.

4. Commit messages must follow the conventional commit specification. This is enforced by the conventional-pre-
commit pre-commit check.

5. The imports at the top of any Python files are grouped and sorted as follows: STDLIB, THIRDPARTY, FIRST-
PARTY, LOCALFOLDER. As an example, consider the imports at the top of reporter.py which look like
this:

import argparse
import asyncio
import json
import logging
import os
import sys
from os.path import abspath, basename, dirname, join, splitext

from nbconvert.exporters import HTMLExporter
from nbconvert.exporters.templateexporter import default_filters
from traitlets.config import Config

from . import HAS_RSMEXTRA
from .reader import DataReader

Rather than doing this grouping and sorting manually, we use the isort pre-commit hook to achieve
this.

6. All classes, functions, and methods in the main code files have numpy-formatted docstrings that comply with PEP
257. This is enforced via the pydocstyle pre-commit check. Additionally, when writing docstrings, make sure to
use the appropriate quotes when referring to argument names vs. argument values. As an example, consider the
docstring for the train_skll_model method of the rsmtool.modeler.Modeler class. Note that string argument

168 Chapter 1. Documentation

https://black.readthedocs.io/en/stable/
https://pypi.org/project/flynt/
https://peps.python.org/pep-0008/
https://peps.python.org/pep-0257/
https://github.com/astral-sh/ruff-pre-commit
https://www.conventionalcommits.org/en/v1.0.0/#summary
https://github.com/compilerla/conventional-pre-commit
https://github.com/compilerla/conventional-pre-commit
https://pycqa.github.io/isort/
https://numpydoc.readthedocs.io/en/latest/format.html
https://peps.python.org/pep-0257/
https://peps.python.org/pep-0257/
http://www.pydocstyle.org/en/stable/
https://rsmtool.readthedocs.io/en/main/api.html#rsmtool.modeler.Modeler.train_skll_model


Rater Scoring Modeling Tool, Release 11.3.0

values are enclosed in double quotes (e.g., “csv”, “neg_mean_squared_error”) whereas values of other built-in
types are written as literals (e.g., True, False, None). Note also that if one had to refer to an argument name
in the docstring, this referent should be written as a literal. In general, we strongly encourage looking at the
docstrings in the existing code to make sure that new docstrings follow the same practices.

1.13.4 RSMTool tests

Existing tests for RSMTool are spread across the various test_*.py files under the tests directory after you check
out the RSMTool source code from GitHub.

There are two kinds of existing tests in RSMTool:

1. The first type of tests are unit tests, i.e., very specific tests for which you have a single example (usually embedded
in the test itself) and you compare the generated output with known or expected output. These tests should have
a very narrow and well defined scope. To see examples of such unit tests, see the test functions in the file
tests/test_utils.py.

2. The second type of tests are functional tests which are generally written from the users’ perspective to test
that RSMTool is doing things that users would expect it to. In RSMTool, most (if not all) functional tests are
written in the form of “experiment tests”, i.e., we first define an experimental configuration using an rsmtool (or
rsmeval/rsmpredict/rsmcompare/rsmsummarize) configuration file, then we run the experiment, and then
compare the generated output files to expected output files to make sure that RSMTool components are operating
as expected. To see examples of such tests, you can look at any of the tests/test_experiment_*.py files.

Note: RSMTool functional tests are parameterized, i.e., since most are identical other than the configuration file that
needs to be run, the basic functionality of the test has been factored out into utility functions. Each line starting with
param in any of the test_experiment_*.py files represents a specific functional test.

Any new contributions to RSMTool, no matter how small or trivial, must be accompanied by updates to documentations
as well as new unit and/or functional tests. Adding new unit tests is fairly straightforward. However, adding new
functional tests is a little more involved.

1.13.5 Writing new functional tests

To write a new experiment test for RSMTool (or any of the other tools):

(a) Create a new directory under tests/data/experiments using a descriptive name.

(b) Create a JSON configuration file under that directory with the various fields appropriately set for what
you want to test. Feel free to use multiple words separated by hyphens to come up with a name that
describes the testing condition. The name of the configuration file should be the same as the value
of the experiment_id field in your JSON file. By convention, that’s usually the same as the name
of the directory you created but with underscores instead of hyphens. If you are creating a new test
for rsmcompare or rsmsummarize, copy over one or more of the existing rsmtool or rsmeval test
experiments as input(s) and keep the same name. This will ensure that these inputs will be regularly
updated and remain consistent with the current outputs generated by these tools. If you must create a
test for a scenario not covered by a current tool, create a new rsmtool/rsmeval test first following
the instructions on this page.

(c) Next, you need to add the test to the list of parameterized tests in the appropriate test file based
on the tool for which you are adding the test, e.g., rsmeval tests should be added to tests/
test_experiment_rsmeval.py, rsmpredict tests to tests/test_experiment_rsmpredict.
py, and so on. Tests for rsmtool can be added to any of the four files. The arguments for the param()
call can be found in the Table 1 below.
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(d) In some rare cases, you might want to use a non-parameterized experiment test if you are doing
something very different. These should be few and far between. Examples of these can also be seen
in various tests/test_experiment_*.py files.

(e) Another rare scenario is the need to create an entirely new tests/test_experiment_X.py file
instead of using one of the existing ones. This should not be necessary unless you are trying to test
a newly added tool or component.

Table 1: Table 1: Arguments for param() when adding new parameter-
ized functional tests

Writing test(s) for rsmtool
• First positional argument is the name of the test directory you created.
• Second positional argument is the experiment ID from the JSON configuration file.
• Use consistency=True if you have set second_human_score_column in the configuration file.
• Use skll=True if you are writing a test for a SKLL model.
• Set subgroups keyword argument to the same list that you specified in the configuration file.
• Set file_format="tsv" (or "xlsx") if you specified the same field in the configuration file.

Writing test(s) for rsmeval
• Same arguments as RSMTool except the skll keyword argument is not applicable.

Writing test(s) for rsmpredict
• The only positional argument is the name of the test directory you created.
• Use excluded=True if you want to check the excluded responses file as part of the test.
• Set file_format="tsv" (or "xlsx") if you specified the same field in the configuration file.

Writing test(s) for rsmcompare
• First positional argument is the name of the test directory you created.
• Second positional argument is the comparison ID from the JSON configuration file.

Writing test(s) for rsmsummarize
• The only positional argument is the name of the test directory you created.
• Set file_format="tsv" (or "xlsx") if you specified the same field in the configuration file.

Writing test(s) for rsmexplain
• First positional argument is the name of the test directory you created.
• Second positional argument is the experiment ID from the JSON configuration file.

Once you have added all new functional tests, commit all of your changes. Next, you should run nose2 to run all the
tests. Obviously, the newly added tests will fail since you have not yet generated the expected output for that test.

To do this, you should now run the following:

python tests/update_files.py --tests tests --outputs test_outputs

This will copy over the generated outputs for the newly added tests and show you a report of the files that it added. It
will also update the input files form tests for rsmcompare and rsmsummarize. If run correctly, the report should only
refer to the files affected by the functionality you implemented. If you run nose2 again, your newly added tests should
now pass.

At this point, you should inspect all of the new test files added by the above command to make sure that the outputs are
as expected. You can find these files under tests/data/experiments/<test>/output where <test> refers to the
test(s) that you added.
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However, if your changes resulted in updates to the inputs to rsmsummarize or rsmcompare tests, you will first need
to re-run the tests for these two tools and then re-run the update_files.py to update the outputs.

Once you are satisified that the outputs are as expected, you can commit them.

The two examples below might help make this process easier to understand:

Example 1: You made a code change to better handle an edge case that only affects one test.

1. Run nose2 --quiet -s tests. The affected test failed.

2. Run python tests/update_files.py --tests tests --outputs test_outputs to update test out-
puts. You will see the total number of deleted, updated and missing files. There should be no deleted files and
no missing files. Only the files for your new test should be updated. There are no warnings in the output.

3. If this is the case, you are now ready to commit your change and the updated test outputs.

Example 2: You made a code change that changes the output of many tests. For example, you renamed one
of the evaluation metrics.

1. Run nose2 --quiet -s tests. Many tests will now fail since the output produced by the tool(s) has
changed.

2. Run python tests/update_files.py --tests tests --outputs test_outputs to update test out-
puts. The files affected by your change are shown as added/deleted. You also see the following warning:

WARNING: X input files for rsmcompare/rsmsummarize tests have been updated. You␣
→˓need to re-run these tests and update test outputs

3. This means that the changes you made to the code changed the outputs for one or more rsmtool/rsmeval
tests that served as inputs to one or more rsmcompare/rsmsummarize tests. Therefore, it is likely that the
current test outputs no longer match the expected output and the tests for those two tools must be be re-run.

4. Run nose2 --quiet -s tests $(find tests -name 'test_*rsmsummarize*.py' |
cut -d'/' -f2 | sed 's/.py//') and nose2 --quiet -s tests $(find tests -name
'test_*rsmcompare*.py' | cut -d'/' -f2 | sed 's/.py//'). If you see any failures, make
sure they are related to the changes you made since those are expected.

5. Next, re-run python tests/update_files.py --tests tests --outputs test_outputs which
should only update the outputs for the rsmcompare/rsmsummarize tests.

6. If this is the case, you are now ready to commit your changes.

1.13.6 Advanced tips and tricks

Here are some advanced tips and tricks when working with RSMTool tests.

1. To run a specific test function in a specific test file, simply use nose2 --quiet -s tests test_X.Y.
Z where test_X is the name of the test file, Y is the enclosing unittest.TestCase subclass, and Z
is the desired test function. Note that this will not work for parameterized tests. If you want to run a
specific parameterized test, you can comment out all of the other parameters in the params and run the
test_run_experiment_parameterized() function as above.

2. If you make any changes to the code that can change the output that the tests are expected to produce, you must
re-run all of the tests and then update the expected test outputs using the update_files.py command as shown
above.
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3. In the rare case that you do need to create an entirely new tests/test_experiment_X.py file instead of using
one of the existing ones, you can choose whether to exclude the tests contained in this file from updating their
expected outputs when update_files.py is run by setting _AUTO_UPDATE=False at the top of the file. This
should only be necessary if you are absolutely sure that your tests will never need updating.

4. The --debugger/-D option for nose2 is your friend. If you encounter test errors or test failures where the
cause may not be immediately clear, re-run the nose2 command with this option. Doing so will drop you into
an interactive PDB session as soon as an error (or failure) is encountered and then you inspect the variables
at that point (or use “u” and “d” to go up and down the call stack). This may be particularly useful for tests
in tests/test_cli.py that use subprocess.run(). If these tests are erroring out, use -D and inspect the
“stderr” variable in the resulting PDB session to see what the error is.

5. In RSMTool 8.0.1 and later, the tests will pass even if any of the reports contain warnings. To catch any warnings
that may appear in the reports, run the tests in strict mode (STRICT=1 nose2 --quiet -s tests).

1.14 Internal Documentation

This section of the documentation is meant only for the project administrators, not users and developers.

1.14.1 RSMTool Release Process

This process is only meant for the project administrators, not users and developers.

1. Recreate the development environment so all unpinned packages are updated to their latest versions. See instruc-
tions for this here.

2. Make sure any and all tests are passing in main. Make sure you have also run tests locally in strict mode
(STRICT=1 nose2 -s tests) to catch any warnings in the HTML report that can be fixed before the release.

3. Run the tests/update_files.py script with the appropriate arguments to make sure that all test data in the
new release have correct experiment ids and filenames. If any (non-model) files need to be changed this should
be investigated before the branch is released. Please see more details about running this here.

Note: Several files have been excluded from the repository due to their non-deterministic nature so
please do not add them back to the repository. The following files are currently excluded:

• Fairness test files for lr-eval-system-score-constant test

• Predictions and all evaluation files for linearsvr test.

Note that the full set of outputs from these test files are also used as input for rsmcompare and rsmsum-
marize tests. These input files need to be updated following the process under Example 2 in Writing
new functional tests. You can also see this pull request for more information.

4. Create a release branch release/XX on GitHub.

5. In the release branch:

• Update the version numbers in version.py.

• Update the conda recipe.

• Update the documentation with any new features or details about changes.

• Run make linkcheck on the documentation (i.e. from the doc/ folder) and fix any redirected/broken
links.
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• Update the README and this release documentation, if necessary. Make sure to update the documentation
badge in the README to use the latest release tag. That documentation version will be created in the steps
below.

6. Build the PyPI source and wheel distributions using python setup.py sdist build and python setup.
py bdist_wheel build respectively. Note that you should delete the build directory after running the sdist
command and before running the bdist_wheel command.

7. Upload the source and wheel distributions to TestPyPI using twine upload --repository testpypi
dist/*. You will need to have the twine package installed and set up your $HOME/.pypirc correctly. See
details here. You will need to have the appropriate permissions for the ets organization on TestPyPI.

8. Install the TestPyPI package as follows:

pip install --index-url https://test.pypi.org/simple/ --extra-index-url https://
→˓pypi.org/simple rsmtool

9. Then run some tests from a RSMTool working copy. If the TestPyPI package works, then move on to the next
step. If it doesn’t, figure out why and rebuild and re-upload the package.

10. Build the new conda package by running the following command in the conda-recipe directory (note that this
assumes that you have cloned RSMTool in a directory named rsmtool). You should delete the build directory
before running the command below. Note that you may need to comment out lines in your $HOME/.condarc file
if you are using ETS Artifactory and you get conflicts:

conda build -c conda-forge .

11. This will create a noarch package with the path to the package printed out to the screen.

12. Upload the package file to anaconda.org using anaconda upload --user ets <path_to_file>. You will
need to have the appropriate permissions for the ets organization.

13. Create pull requests on the rsmtool-conda-tester and rsmtool-pip-tester repositories to test the conda and TestPyPI
packages on Linux and Windows.

14. Draft a release on GitHub while the Linux and Windows package tester builds are running.

15. Once both builds have passed, make a pull request with the release branch to be merged into main and request
code review.

16. Once the build for the PR passes and the reviewers approve, merge the release branch into main.

17. Upload the already-built source and wheel packages to PyPI using twine upload dist/*. You will need
to have the twine package installed and set up your $HOME/.pypirc correctly. You will need to have the
appropriate permissions for the ets organization on PyPI.

18. Make sure that the ReadTheDocs build for main passes by examining the badge at this URL - this should say
“passing” in green.

19. Tag the latest commit in main with the appropriate release tag and publish the release on GitHub.

20. Create a new documentation version in readthedocs.org for this new tag and make it version visible by default.

21. Update the CI plan for RSMExtra (only needed for ETS users) to use this newly built RSMTool conda package.
Do any other requisite changes for RSMExtra. Once everything is done, do a release of RSMExtra.

22. Update the RSMTool conda environment on the ETS linux servers with the latest packages for both RSMTool
and RSMExtra.

23. Send an email around at ETS announcing the release and the changes.
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